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GRID-FREE VORTEX METHODS FOR NATURAL
CONVECTION; HANDLING SOURCE TERMS AND
NONLINEAR DIFFUSION

Issam Lakkis
Department of Mechanical Engineering, American University of Beirut,
Beirut, Lebanon

Vortex methods for simulating natural convection of a ideal gas in unbounded two-

dimensional domains are presented. In particular, the redistribution method is extended

to enable simulation of nonlinear diffusion of an ideal gas in isobaric conditions encountered

in unbounded low Mach number flows. In solving the linear system governing the redistri-

bution of a given element, the entropy of the fractions transferred to its neighbors is max-

imized. We also address the problem of handling source terms in grid-free vortex methods

and propose a fast, accurate, and physically motivated method for solving the associated

inverse problems. Examples include generation of baroclinic vorticity in nonreacting

buoyancy-driven flows, and in addition, generation of internal energy and species in buoyant

reacting flows. Accuracy and speed of the proposed algorithms for nonlinear diffusion and

vorticity generation are investigated separately. Simulations of natural convection of a

‘‘thermal patch’’ for Grashof number ranging from to 1,562.5 to 25,000 are presented.

INTRODUCTION

Vortex methods [10, 11, 39], as opposed to grid-based methods [14, 57], are
Lagrangian-based grid-free numerical methods for solving the vorticity transport
equation. In these methods, the vorticity field is discretized using vortex elements
or ‘‘blobs.’’ Operator splitting of the vorticity equation enables convection and
diffusion of vorticity to be carried out numerically as separate steps. Convection is
simulated by transporting conserved quantities such as circulation along particles’
trajectories, where the particles velocities are obtained using a Biot-Savart sum-
mation over all the computational elements. Vortex methods are adaptive in nature
in the sense that computational elements carrying vorticity, moving with the flow
field, exist only in regions of nonzero vorticity. They are particularly attractive for
capturing small-scale features of unsteady large Reynolds number flows in
unbounded domains. Not only is meshing of the domain avoided, the Lagrangian
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nature of the method also eliminates numerical discretization of the convective term
in the Navier-Stokes equations, thus eliminating associated numerical diffusion.
Satisfactory handling of the no-slip boundary conditions at solid boundaries enabled
high-resolution spatially adaptive vortex methods [3, 12, 28, 36, 40, 48] to simulate
separating flows and accurately predict onset of separation and time evolution of
drag and lift.

The computational cost and accuracy of vortex methods are continuously
improving. Replacing direct methods by fast methods [4, 22] for velocity calculations
reduces the cost from O(N2) to O(N) or O(N logN), where N is the number of
elements. Diffusion schemes such as the redistribution method [35, 36, 58] and the
particle strength exchange method [15] perform accurate simulation of the diffusion
step at a cost that is a fraction of the convection step. Other methods for solving the
diffusion equation include random walk [9] and core expansion [30, 39, 52].

Vortex methods were combined with the Transport Element Method [21, 56]
for numerical simulation of reacting shear layers [27, 60], Rayleigh Taylor flows
[29], and fire plumes [20, 31]. A Grid-free Vortex Method for simulating low Mach
number, diffusion-controlled combustion in an axisymmetric domain is presented in
[35] where the Redistribution Method using finite cores is employed for diffusion of
vorticity and scalars. A vortex particle method for unsteady two-dimensional com-
pressible flow is proposed in [17]. The method simulates the full compressible equa-
tions of motion by using particles that are able to change volume and that carry
vorticity, dilatation, enthalpy, entropy, and density. Coupled Lagrangian-Eulerian

NOMENCLATURE

cp constant-pressure specific heat

E energy

f redistribution fraction
~ff b body force per unit mass

~gg gravitational acceleration (� �gĝg)

Gr Grashof number

h desired elements spacing
~hh specific enthalpy

k thermal conductivity

L characteristic length

M number of neighbors

Ma Mach number

N number of elements

p pressure

Pr Prandtl number

R ideal gas constant

Re Reynolds number

t time

T temperature

~uu velocity vector

V characteristic velocity

~xx position vector (x, y, z)

ẑz unit vector in z direction

a thermal diffusivity (� k=qcp)

C circulation

m dynamic viscosity

n kinematic viscosity (�m=q)
p dynamic pressure component

q density

r core radius

s � at
/ core function

U viscous dissipation term
~xx vorticity vector (� xẑz)

Subscripts

c convection-related

d diffusion-related

exp volumetric expansion

E thermal energy-related

x vorticity-related

1 free-stream conditions

Superscripts

T matrix transpose

(0) conditions at beginning of diffusion

step
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schemes for reacting flow modeling are presented in [45, 49, 56]. Grid-free modeling
of radiation in participating media is proposed in [32] and simulation of reacting
radiating fuel ring is presented in [34].

While grid-based methods have shown success in simulating buoyant flows [7,
16, 33, 51], grid-free Vortex Methods for simulating buoyancy driven and reacting
flows still face various challenges that have been treated with different degrees of suc-
cess. The first challenge is grid-free modeling of non-linear diffusion, where nonli-
nearity primarily arises from the fact that density is a function of temperature and
pressure. A novel extension of the Smoothed Redistribution Method for simulating
nonlinear diffusion is presented in this paper. Also, accurate handling of baroclinic
vorticity generation, volumetric expansion, and the reaction terms in the energy
and species equations in grid-free vortex methods continue to be a challenge. This
is because the underlying problem is an inverse problem of recovering the transported
elements strengths (circulation, energy, etc.) from pointwise values of vorticity and
temperature. To solve the inverse problem, Marshall and Grant [44] proposed a
robust and quick iterative scheme what was later employed in [35] for simulating
low Mach number, diffusion-controlled combustion in an axisymmetric domain.
While Marshall and Grant’s method does not suffer from the non-physical oscillatory
behavior of the numerical solution arising from the poor condition number of the
coefficients matrix, it does not yield an optimal solution in terms of point-wise accu-
racy for a given cost (or lowest cost for given accuracy). In this paper we propose an
alternative fast and accurate scheme for solving the inverse scheme. For the purpose
of addressing this challenge, various numerical schemes for solving the inverse prob-
lem ranging from nonlinear solvers to projection-based iterative solvers were
developed and compared using a canonical natural convection problem. Aspects of
other tools such as Regularization methods for solving the normal problem are also
discussed. Another contribution in this paper is a novel implementation of solving the
linear system governing the redistribution fractions arising in the Redistribution
Method for diffusion. In particular, a new optimization function is proposed; the
redistribution equations, subject to the positivity constraints, are solved while maxi-

mizing the entropy �
PM

i¼1 f ilnf i, where fi is the fraction transferred to neighbor i and

M is the number of neighbors. With this objective function, an alternative solution
scheme to earlier implementations based on linear programming [58] and
non-negative least squares [35] is proposed. Discussion and comparison of accuracy
and speed of the proposed method along with previous methods are presented.

This article is organized as follows. The governing equations and the low Mach
number approximation are presented in the next section, followed by a brief dis-
cussion of vortex methods and operator splitting. Discussion of the smoothed redis-
tribution method with focus on accuracy and cost is then presented. Development of
the redistribution scheme for nonlinear diffusion of an ideal gas at isobaric con-
ditions is then discussed and presented, followed by a discussion on handling the
source terms for vorticity generation and volumetric expansion. The numerical
algorithm is then presented, followed by discussion of accuracy and speed of the pro-
posed implementations of nonlinear diffusion and vorticity generation. Simulations
of natural convection of a thermal patch for different values of Grashof number are
presented in the last section before conclusion.
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GOVERNING EQUATIONS

The conservation of mass, momentum, and energy for a nonreacting compress-
ible flow, with constant m, are

dq
dt

þ qr �~uu ¼ 0 ð1Þ

q
d~uu

dt
¼ �rpþ mr2~uuþ m

3
rðr �~uuÞ ð2Þ

q
d~hh

dt
¼ dp

dt
þr � ðkrTÞ þ m

2
U ð3Þ

The fluid is assumed to be an isotropic elastic medium (zero bulk viscosity
coefficient). The vorticity transport equation in two-dimensional domains is given by

d~xx
dt

¼ nr2~xxþrq
q

� ~ff b �
d~uu

dt

� �
�~xx r �~uuð Þ ð4Þ

For an ideal gas, with p¼ qRT and dh¼ cpdT, the energy equation, in the
absence of source terms and thermal radiation, is expressed as

qcp
dT

dt
¼ r � ðkrTÞ þ dp

dt
þ m

2
U ð5Þ

Employing the ideal gas law, conservation of mass, and energy equations, the
equation for pressure is

dp

dt
þ cp r �~uuð Þ ¼ ðc� 1Þ r � ðkrTÞ þ m

2
U

h i
ð6Þ

where c¼ cp=cv.
In the low Mach number combustion model [42, 43], the pressure is decom-

posed into a dynamic component, p, and thermodynamic component, p1, the ratio
of which is O(Ma2). This enables decoupling the density and pressure so that the
total pressure may be replaced everywhere by the thermodynamic pressure, except
in the momentum equation. As such, density variations in an ideal gas arise only
from temperature variations according to p1¼ qRT. Large-amplitude density and
temperature fluctuations are therefore allowed, and the only requirement is that
the total pressure stays close to the background pressure, assumed constant for open
domains, which is equivalent to Ma2<< 1. The total density variation is then used in
the mass conservation equation to determine the divergence of velocity field
r �~uu ¼ � 1=qð Þ dq=dtð Þ, which is solved to compute the irrotational velocity compo-
nent, one of two components of the total velocity.
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Employing p1¼ qRT, the vorticity transport equation becomes

d~xx
dt

¼ nr2~xx�rT

T
� ~ff b �

d~uu

dt

� �
�

~xx
T

dT

dt
ð7Þ

The energy equation, in the absence of source terms, is

dT

dt
¼ ar2T ð8Þ

To express the vorticity transport equation and the energy equation in dimen-
sionless forms, we introduce characteristic length L, velocity V ¼

ffiffiffiffiffiffi
gL

p
, time L=V,

and density by q1 ¼ p1=RT1. Temperature is nondimensionalized according to
~TT ¼ T � T1ð Þ= T� � T1ð Þ, where T� is either some maximum initial temperature
or solid boundary characteristic temperature. The vorticity transport equation and
the energy equation may then be expressed in dimensionless form as

d~xx
dt

¼ 1þ hT
Re

r2~xxþ Gr

Re2
1

1þ hT
rT � ẑzþ d~uu

dt

� �
�~xx

dT

dt

� �
ð9Þ

dT

dt
¼ 1

Re Pr
1þ hTð Þr2T ð10Þ

where h� (T� �T1)=T1 and

Gr ¼ ghL3

n21
Re ¼ q1VL

m
Pr ¼ mcp

k
ð11Þ

In the rest of this article, and unless otherwise specified, all variables are dimen-
sionless. Further, since all the simulations presented are for unbounded flows, we set
h¼ 1.

VORTEX METHODS AND OPERATOR SPLITTING

In vortex methods, the vorticity field is represented by N Lagrangian elements
at positions ~xxi as

~xxð~xx; tÞ ¼
XN
i¼1

~CCiðtÞ/rð~xx�~xxiÞ ð12Þ

where ~CCi is the circulation of element i and / is a core function with cutoff radius r.
For 2-D flows in the x� y plane, ~xx ¼ xẑz and ~CC ¼ Cẑz. Constructing higher-order
core functions is discussed in [5]. The temperature distribution may be expressed
in a similar manner:

Tð~xx; tÞ ¼
XN
i¼1

EiðtÞ/rð~xx�~xxiÞ ð13Þ
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Note that, generally, the core function and=or core radius for the temperature
need not be the same as those for vorticity.

Vortex methods rely on operator splitting in which, within a numerical time
step Dt, conserved quantities (Ci and Ei) are first convected along particle trajectories
and then diffusion is accounted for by solving the diffusion equation. In the presence
of vorticity generation, a generation substep must also be included. The advection,
diffusion, and generation substeps are

Advection :
dCi

dt
¼ 0;

dEi

dt
¼ 0 ð14Þ

Diffusion :
qx
qt

¼ 1þ T

Re
r2x;

qT
qt

¼ 1þ T

RePr
r2T ð15Þ

Generation :
qx
qt

¼ Gr

Re2
1

1þ T
rT � ĝgþ d~uu

dt

� �
� ~xx

dT

dt

� �
� ẑz ð16Þ

As mentioned in the introduction, velocity computations for the convection
part can be made fast by employing fast multipole solvers for grid-free methods
[4, 22] or fast fourier transform (FFT)-based Poisson solvers [55] for vortex-in-cell
methods. Various methods for simulating diffusion include random walk [9], the
redistribution method [35, 36, 58], and the particle strength exchange method [15].

In the absence of solid boundaries, the velocity may be expressed as the sum of
a (divergence-free) rotational component due to vorticity distribution and a potential
component which accounts for free-stream velocity and volumetric expansion:

~uu ¼~uux þ~uu1 þ~uuexp ð17Þ

where

r �~uuexp ¼ � 1

q
dq
dt

¼ 1

1þ T

dT

dt
ð18Þ

from conservation of mass. Expressing ~uuexp ¼ r/, the potential / satisfies the
Poisson equation r2/¼ (1þT)�1 dT=dt.

THE SMOOTHED REDISTRIBUTION METHOD

The redistribution method [58, 61] relies on the linearity of the diffusion
equation to approximate its solution as superposition of the diffusion of all the vor-
tex elements. Diffusion of an element i is modeled by redistributing its circulation
among itself and neighboring elements j that are within a distance R0hn, where
hn �

ffiffiffiffiffiffiffiffi
nDt

p
is the diffusion length and R0 is a constant (typically in the range

ffiffiffiffiffi
12

p
–ffiffiffiffiffi

16
p

). The linear system of algebraic equations governing the fractions fij of the cir-
culation Ci to be redistributed to the neighboring elements j following diffusion is
obtained by matching a number of moments of the exact solution of the diffusion
equation for element i to those of the approximate solution involving elements j, with
the order of approximation depending on the number of matched moments. The
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physical nature of diffusion, in addition to stability conditions, requires these frac-
tions to be positive; fij� 0. To ensure adequate resolution, the interdistance between
elements, h, must be of the order of magnitude of the diffusion length scale, i.e.,
h¼ khn, where the constant k is typically in the range

ffiffiffi
6

p
–
ffiffiffi
8

p
. Since the presence

of strong shear associated with convection near walls or in the vicinity of shear layers
increases the distance between elements in the direction of maximum strain, more
elements are often required in these areas. This is numerically manifested by the fact
that the linear system governing the fractions, subject to positivity constraints, can-
not be solved. In this case, new elements, selected from a set of candidates uniformly
distributed on a circle of radius h, are sequentially injected until a solution is
obtained. Injection of a new element is carried out in a manner that maximizes
the minimum distance to the existing neighbors, which ensures some level of uni-
formity in the elements distribution. Strong shear may also lead to local crowding
of elements: As the distance between elements increases in the direction of extensive
strains, it decreases in the perpendicular direction. To reduce crowding of elements,
elements within a distance Rihv from each other (Ri �

ffiffiffiffiffiffiffi
0:5

p
) of each other are

merged while conserving the zeroth and first moments of vorticity. Injection of
new elements according to the aforementioned scheme along with merging of ele-
ments in overcrowded regions maintains some level of uniformity, which renders
the method ‘‘completely’’ grid-free—no need for occasional remeshing. Simulations
of flow (Re up to 40,000) over an impulsively started cylinder using grid-free vortex
methods employing the (point) redistribution method for diffusion are presented in
[58, 61]. In these simulations, the vorticity field is represented as a set of delta func-
tions (desingularized for convection), and evaluation of the pointwise vorticity field
is carried out using an infinite-order smoothing function. Results including stream-
lines, vorticity contours, boundary-layer velocity profiles, and time evolution of the
drag coefficient, compared to previously published experimental [6] and numerical
results [2, 24, 28, 41, 47, 63], show the high accuracy of the method. The redistri-
bution step in [58, 61] was carried out such that up to second-order moments were
conserved, and the resulting system of equations, subject to the non-negativity con-
straint, was solved numerically using the linear programming technique of [1]. The
computation time of the redistribution step is roughly half of the total time for
the computational examples considered in [61], which is in accordance with Figure 7c.

The redistribution method was later extended for axisymmetric domains in [35]
to handle vortex blobs, where the core function is the Green function of the axisym-
metric diffusion equation. To reduce the cost, the authors chose to solve the redistri-
bution equations by the non-negative least squares (NNLS) method [38]. Numerical
investigations presented in [35] revealed that for a convection-diffusion problem,
the error dependence on the core radius r and elements spacing h is according to
rnþ (h=r)lr2, where l> 1 and n is the order of the core function (n¼ 2 for the
second-order Gaussian core function). The first term (rn), referred to as the smooth-
ening error, may be reduced by employing a higher-order core function [5]. The
second term, (h=r)lr2¼ (h=r)l�2h2, is the discretization error incurred in the redistri-
bution method for diffusion. When choosing the core function as the Green’s function
of the diffusion equation (Gaussian for 2-D Cartesian coordinates), numerical experi-
ments [35] of the diffusion problem using the smoothed redistribution scheme showed
that l� 2 for overlap ratio satisfying 1<r=h< 4 (Figure 3 of [35]). So the accuracy of

376 I. LAKKIS

D
ow

nl
oa

de
d 

by
 [

A
m

er
ic

an
 U

ni
ve

rs
ity

 o
f 

B
ei

ru
t]

 a
t 0

6:
04

 0
3 

O
ct

ob
er

 2
01

2 



the redistribution scheme [35] for diffusion is second-order-accurate in space, and
because h2/Dt, first-order-accurate in time, which is in accordance with the
first-order explicit approximation of the time derivative. Simulations of the
convection-diffusion problem of a vortex ring [35] showed that the error is still
second-order-accurate in space (l � 2), as long as the smoothness error, associated
with the finite order (n) of the core function employed, does not take over (see
Figures 9, 10, and 11 of [35]).

While solving the redistribution equations using the NNLS instead of linear pro-
gramming reduces the cost significantly, the number of neighbors receiving nonzero
fraction is less. One way to overcome this shortcoming is to conserve up to
fourth-order moments [36]. In [36], a high-resolution spatially adaptive grid-free vortex
method for separating flows in two-dimensional domains is proposed. The method
employs the smoothed redistribution method for simulating diffusion. Other aspects
of the method include spatial adaptivity and removal of elements in overcrowded
regions. The accuracy and cost of the method are assessed by comparing simulation
results of the flow over an impulsively started cylinder for Reynolds number up to
9,500. Comparison of drag coefficient, radial profiles of the tangential velocity compo-
nent, and profiles of the radial velocity component along the rear symmetry axis with
previously published results in [28, 58, 63] shows the satisfactory accuracy of the
method. The cost in terms of the number of elements, presented in Figure 28 of [36],
shows the significant savings resulting from the spatial adaptivity and element-removal
algorithms. As for the cost of the redistribution step, the results in Figure 6 of [36] show
that, except for small number of elements, the fraction of time consumed by the
smooth redistribution scheme is very small compared to the time consumed by an N
logN fast multipole scheme for convection. For example, forN¼ 24,189 elements, dif-
fusion by redistribution consumed 2.4 CPU seconds, whereas the velocity computation
consumed 63 CPU seconds. So if convection is performed using a second-order Runge-
Kutta integration scheme, then the diffusion step consumes less than 2% of the time
consumed by the convection-diffusion time step. The method of [36] is grid-free in
the sense that no occasional remeshing is needed, and uniformity of elements spacing
is further enhanced by removing elements within a small neighborhood (�

ffiffiffiffiffiffiffiffiffiffi
anDt

p
, a

<2) of a given element and redistributing their fractions to neighbors within the redis-
tribution neighborhood (Rhn), when possible, while satisfying up to higher-order
moments. This scheme, in addition to a spatial adaptivity scheme, were employed in
[36] to simulate a Re¼ 1,000 uniform flow over an cylinder undergoing angular
oscillations over a ‘‘longer’’ time period (0< t< 15). The method yielded satisfactory
accuracy for the lift and drag over the time period. The pointwise accuracy in the
vorticity field is in accordance with what is to be expected from spatial adaptivity.

NONLINEAR DIFFUSION: ISOBARIC IDEAL GAS

In this section, the smooth redistribution method is extended to handle
nonlinear diffusion of an ideal gas at constant pressure, for which q¼ (1þT)�1.
In this case, thermal diffusion is governed by

qT
qt

¼ 1

RePr
ð1þ TÞr2T ð19Þ
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We first point out that energy is conserved, since q(1þT)¼ constant so that
the integral over the unbounded domain

R
qcpð1þ TÞ d~xx is constant. So, in the

diffusion process, if we respect q(1þT)¼ constant, then energy is conserved.
The smoothed redistribution algorithm [35, 36] is extended to numerically

simulate nonlinear diffusion while keeping the same basis function for linear

diffusion in unbounded domains, /rE
¼ ðpr2

EÞ
�1 exp �j~xx�~xx0j2=r2

E

� �
,

rE ¼ 2h; h ¼
ffiffiffiffiffiffiffiffiffiffi
6aDt

p
. The algorithm is based on invoking the linear diffusion algor-

ithm a multiple times of the diffusion step Dt=(RePr).
To develop the redistribution scheme to solve Eq. (19) over a time step

t! tþDt, Eq. (19) is approximated in an explicit form as

qT
qt

’ 1

RePr
ð1þ T ð0ÞÞr2T ð20Þ

where superscript (0) refers to conditions at the beginning of the diffusion step, and
T ð0Þð~xxÞ is given by

T ð0Þð~xxÞ ¼
XN
j¼1

E
ð0Þ
j /rE

ð~xx�~xx
ð0Þ
j Þ ð21Þ

We consider diffusion of element i of energy E
ð0Þ
i , position~xx

ð0Þ
i , and core radius

rð0Þ
i . Diffusing this element by redistribution is essentially transferring fractions f kE

ð0Þ
i

of the elements energy to itsM neighbors such that the followingmoments are satisfied:Z
xmyn

qT
qt

d~xx ¼ 1

RePr

Z
xmynð1þ T ð0ÞÞr2Td~xx ð22Þ

The time derivative is then approximated as a first-order finite difference,
so that

Z
xmyn

XM
k¼1

f k/rk
ð~xx�~xxkÞ � /ri

ð~xx�~xxiÞ
" #

d~xx ð23Þ

¼ Dt
RePr

Z
xmyn 1þ

XNð0Þ

j¼1

E
ð0Þ
j /rj

ð~xx�~xx
ð0Þ
j Þ

" #
r2/ri

ð~xx�~xx
ð0Þ
i Þ d~xx ð24Þ

where the right-hand side is evaluated at the beginning of the time step, as in
explicit methods. For our choice of the core function

/ri
ð~xx�~xxiÞ ¼ ðpr2

i Þ
�1exp �j~xx�~xxij2=r2

i

� �
, moments up to mþ n¼ 2 are given, for

constant r, as

XM
k¼1

f k � 1 ¼ Ds
pr2

XN
j¼1

Ej j� 1ð Þe�j ð25Þ

XM
k¼1

f kDxki ¼
Ds

2pr2

XN
j¼1

EjDxjije
�j ð26Þ
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XM
k¼1

f kDyki ¼
Ds

2pr2

XN
j¼1

EjDyjije
�j ð27Þ

XM
k¼1

f k Dx2ki þ
1

2

� �
� 1

2
¼ 2Dsþ Ds

4pr2

XN
j¼1

Ej jð1þ Dx2jiÞ þ Dx2ji

h i
e�j ð28Þ

XM
k¼1

f kDxkiDyki ¼
Ds
4pr2

XN
j¼1

EjDxjiDykið1þ jÞe�j ð29Þ

XM
k¼1

f k Dy2ki þ
1

2

� �
� 1

2
¼ 2Dsþ Ds

4pr2

XN
j¼1

Ej jð1þ Dy2jiÞ þ Dy2ji

h i
e�j ð30Þ

where s¼ at, all the coordinates xi, yi, xj, yj, and
ffiffiffi
s

p
are nondimensionalized by r,

and j ¼ ðj~xxi �~xxjj2Þ=2.
The redistribution algorithm for the nonlinear diffusion problem is as follows.

1. Since (1þT)=(RePr) may be interpreted as a local diffusion coefficient,
elements that have higher temperature diffuse more than those of lower tempera-
ture. More specifically, for a given time step Dt, each element diffuses over a dif-
fusion step of (1þT)Dt=(Re Pr). The diffusion algorithm adopted in this work
is based on diffusion of an element by redistribution over a fixed diffusion step,
equal to Dt=(Re Pr). This implies that over time step Dt, element i is diffused
over (1þTi) substeps, where in each substep, diffusion takes place over Dt=
(Re Pr). So, at the beginning of a diffusion step, the elements are organized into
different categories based on their temperature. Category k (k> 2) contains all
those elements with temperatures in the range [k� 1, k]. Each category k is then
diffused over k substeps of Dt=(Re Pr).

2. The right-hand side of the redistribution equations, along with the temperature at
elements positions, are calculated once at the beginning of each time step. Given
that the core function is a Gaussian, the cost of this step can be reduced by intro-
ducing a cutoff radius Rc=r (between 3 and 5).

Shankar et al. [58] proposed to solve the linear system A~ff ¼~bb subject to fi� 0
by introducing ~ww ¼~ff �~1

2
1
2 and solving, using the SIMPLEX method [46] for linear

programming, the problem

Minimize jj~wwjj1 ð31Þ

Subject to ð32Þ

A ~00
I ~11

�A ~00
�I ~11

0
BB@

1
CCA ~ww

jj~wwjj1

� �
�

~bb
0

~00
�~bb0
~00

0
BB@

1
CCA ð33Þ
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where~bb
0 ¼~bb� A

~11
2. Minimizing L1ð~wwÞ not only reduces the number of zero fractions

received by neighbors in the redistribution process, it also minimizes the maximum
jjfi� 1=2jj1 among these elements, which yields the most possible uniform fractions dis-
tributions by minimizing the largest departure among the fractions from 1=2. To reduce
cost, Lakkis [35, 36] alternatively proposed employing a non-negative least-squares
algorithm to solving the problemA~ff ¼~bb subject to fi� 0. The number of zero fractions
in the solution vector~ff is reduced by satisfying higher-order moments with mþ n	 4.
This approach is no longer feasible for the nonlinear diffusion problem. Numerical
simulations showed that satisfying moments up to fourth order results in deterioration
in accuracy in the solution, and at times it is impossible to satisfy these moments with
positive solution. This is due to the approximations employed in arriving at the
moments equations: (1) approximation of @T=@t to first order in time and (2) the explicit
nature of the scheme implied by evaluating q at t for the diffusion step t! tþDt.

In this article, we propose to maximize the entropy of the solution

Minimize g ¼
XM
i¼1

f i ln f i s:t: A~ff ¼~bb and f i � 0; i ¼ 1; . . . ;M ð34Þ

The solution methodology adopted is a variation of the gradient projection
method [50]. The method relies on steepest descent, where the negative gradient is pro-
jected onto the working surface defined by the moments constraints in order to deter-
mine the direction of movement. In the absence of positivity constraints, if ~ff k is a
feasible solution, an improved solution~ff kþ1 (with smaller g) is obtained according to

~ff kþ1 ¼~ff k þ a~dd with ~dd ¼ �Prgð~ff ÞT ð35Þ

where P is the projection matrix P¼ I�AT (AAT) �1A and a is a positive number that
minimizes gð~ff k þ a~ddÞ. Note that A AT is an m�m square matrix where m is the num-
ber of moments (m¼ 6) and the inversion cost is small. With the positivity constraints
fi� 0, the algorithm must be modified to guarantee that none of the (fi)kþ1 is negative.
Let’s assume, for example, that ðf jÞk � amin

~PPj � rgð~ff ÞT < 0 for a given small positive
amin, then the descent direction �rgð~ff ÞT is projected onto a direction orthogonal to
~PPj, the jth row of P, so that

~ff kþ1 ¼~ff k � aP rgð~ff ÞT �~PP
T

j

~PPj � rgð~ff ÞT

~PPj �~PP
T

j

2
4

3
5 ð36Þ

where a minimizes gð~ff k þ a~ddÞ subject to (fi)kþ1� 0.
Speed and accuracy of the proposed method are discussed in the results section.

GRID-FREE HANDLING OF SOURCE TERMS

In vortex methods, the vorticity, temperature, and species concentrations are
expressed as

bð~xxÞ ¼
XN
i¼1

Si /ri
ð~xx;~xxiÞ ð37Þ
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where Si, the strength of element i, corresponds to circulation C when b is vorticity x,
to thermal energy E when b is temperature T, etc. The basis or cutoff function / asso-
ciated with element i is characterized by a cutoff or core radius ri. Choice of r is
based on two consideration: (1) accurate convection requires that small elements
overlap ri=hi, where hi is the average element spacing in the neighborhood of element
i; and (2) smooth distribution of b and consequently noise-free gradients rb require
large r=h. Numerical simulations [35] showed that the optimal value of r=h lies in the
range 2 < r=h < 5. Note that, due to convection, the desired element interspacing,
used as the injection radius, is generally less than the actual average element spacing.

In the presence of source terms, the operator splitting must be modified to
account for generation or destruction of quantity S. One way to do this is to perform
this as a separate step:

qb
qt

¼ f ð~xx; tÞ ð38Þ

The objective is to perform the generation step with acceptable accuracy at a
computational cost that is a fraction of that of the convection step. This is because
the convection step is the most expensive step in the convection-diffusion vortex
method. With a second-order Runge-Kutta time integration scheme, the convection
step requires two evaluations of the velocity field, each of which is of order N2 when
direct Biot-Savart summation is employed or of order N or N logN when fast algo-
rithms are employed.

Noting that Eq. (38) enables integrating b in time according to
bð~xx; tþ DtÞ ¼ bð~xx; tÞ þ

R tþDt
t f ð~xx; tÞdt, and that vortex methods transport quantities

S along particle trajectories, then one must solve the inverse problem

q
qt

XN
i¼1

Si/ri
ð~xx;~xxiÞ ¼ f ð~xx; tÞ ð39Þ

or

XN
i¼1

Si/rið~xx;~xxiÞ
 !

tþDt

¼
XN
i¼1

Si/ri
ð~xx;~xxiÞ

 !
t

þ
Z tþDt

t

f ð~xx; tÞdt ð40Þ

If the generation step is to be carried out with the same set of elements
ð~xxi;riÞ; i ¼ 1; . . . ;N, then Eq. (40) reduces to

XN
i¼1

DSi/ri
ð~xx;~xxiÞ ¼

Z tþDt

t

f ð~xx; tÞdt ð41Þ

The problem is essentially finding changes in element strength DSi, which we
shall denote as Si for the rest of this section, due to the generation step by satisfying
Eq. (41).

Our approach to numerical solution of Eq. (41) is to cast it as a linear system
/~SS ¼~ff , where matrix / 2 Rm�n, vector ~SS 2 Rn (n�N), vector~ff 2 Rm, by choosing
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to evaluate it atm positions~nnj , for j¼ 1, . . . ,m. Ifm 6¼ n and the positions~nnj were cho-
sen to be different from element positions (one obvious choice is to choose~nnj to be on
a uniform grid), matrix / is nonsquare and in this case regularization methods [26, 62]
for ill-posed problems, which solve the normal equations /T/þ mrI

� 	
~SS ¼ /T~ff where

mr is the regularization parameter, are a logical choice. In this article, we choose m¼ n
and~nni ¼~xxi for i¼ 1, . . . ,N so that / is a square matrix. The underlying motivation is
that when solving a square linear system, at our disposal are the powerful GMRES
[53, 54] and biconjugate gradient (BCG) [18, 37] algorithms, which are faster than reg-
ularized methods in solving normal equations, particularly because multiplication by
/T results in squaring the condition number. The second reason for our choice is that
the algorithm remains grid-free and the same set of elements is employed in the
generation step. Additionally, if all the elements have the same core radius, then /
is symmetric. In this case, solvers for symmetric positive definite linear systems such
as the conjugate gradient method [25] are at our disposal. For the symmetric problem,
it is possible to introduce a regularization parameter mr by solving /þ lrIð Þ~SS ¼~ff ;
since / is symmetric, there is no need to multiply by /T.

Note, however, that if we go ahead and solve the system /~SS ¼~ff using GMRES
or BCG without regularization or constraints, the solution obtained may be nonphysi-
cal [62] and characterized by high-frequency spatial oscillations so that the circulation,
Si, generated at a certain position may have a sign that is opposite to the vorticity gen-
erated, fi, at that same position. To avoid regularization and the not so obvious or
cost-effective choice of the regularization parameter mr in the normal equation problem
/T/þ mrI
� 	

~SS ¼ /T~ff , we alternatively seek to impose the physcially based constraint
that the circulation generated at certain position has the same sign as the vorticity
generated at that position. In this respect, we seek to solve the linear system

/~SS ¼~ff s:t: Sif i � 0 for i ¼ 1;N ð42Þ

The approach adopted in this article to solve the above problem is by investigat-
ing two classes of methods: (1) iterative methods for nonlinear optimization that solve
the linear system while implicitly satisfying the sign constraint; and (2) projection-
type iterative methods that solve the unconstrained problem in an inner loop and pro-
ject the solution to satisfy the constraints in the outer loop. The method of Marshall
and Grant [44] is also included in the discussion. These methods are compared in
terms of speed, accuracy, and robustness. The method that offers the best trade-off
between these desired properties will then be employed to solve the unsteady natural-
convection problem discussed in the results section. Since the computational cost of
direct methods of linear programming such as the SIMPLEX method [46] is prohibi-
tive for large problems, they are not considered in this work and are discussed no
further for the generation problem.

NonLinear Interior Point Methods

In class (1) methods, we express

Si ¼ signðf iÞgðfiÞ; where gðfÞ � 0 ð43Þ
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where g(f) is a non-negative function such as jfj, f2, exp (f), etc., and solve for~ff by

least-squares minimization of the function F ¼ 1
2 jj/s~gg�~ff jj2, where s is a diagonal

matrix with sii¼ si¼ sign(fi).
The nonlinear steepest-descent (NLSD) method [19] updates the solution from

iteration n to iteration nþ 1 according to~ffnþ1 ¼~ffn � a qF=q~ff
� �

~ff¼~ffn
, where the para-

meter a minimizes Fð~ffnþ1Þ such that qFð~ffnþ1Þ=qa ¼ 0. This is done by expressing

Fð~ffnþ1Þ as a Taylor series expansion around~ffn to second order, taking the derivative
with respect to a, and setting it to zero to obtain

a ¼
~dd
T

n
~ddn

~dd
T

n Hn
~ddn

ð44Þ

where

~ddn �
@F

@~ff






~ffn

and Hn �
@2F

@~ff@~ff
T






~ffn

ð45Þ

The nonlinear conjugate gradient (NLCG) method [13, 23, 59] starts in the same
manner as the steepest descent. The solution is initially updated according to
~ff1 ¼~ff0 � a~ddn, where gradient direction ~ddn is given by Eq. (45). Instead of following
the search direction defined by the negative of the gradient of the function to be mini-
mized, the conjugate gradient algorithm follows search directions~ppk that are (1) / -

orthogonal or conjugate~ppi/~ppj ¼ 0 so that (2) the error at iteration nþ 1,~eenþ1 �~ffn �~ff,

where~ff is the exact solution, is /-orthogonal to the conjugate search direction at iter-

ation n, i.e.,~ppn/~eekþ1 ¼ 0. Then the solution is updated according to~ffnþ1 ¼~ffn � a~ppn.
Since satisfying the requirement ~ppn/~eenþ1 ¼ 0 is equivalent to requiring

dFð~ffnþ1Þ=da ¼ 0, the parameter a is given in Eq. (44). The orthogonal conjugate
directions~ppn are constructed using the Gram-Schmidt Orthogonalization Process.

Projected Restarted Iteration Methods

The projected restarted iteration method (PRIM) and restricted step projected
restarted iteration method (RSPRIM) [8] were devised to compute non-negative solu-
tions of linear ill-posed problems. These methods employ an inner and an outer loop.
For the kþ 1 outer iteration, the inner loop solves the unconstrained linear problem

/~wwðkþ1Þ ¼~rrðkÞ (usually with GMRES-RESTARTED) with ki iterations, after which

the solution~ff
ðkþ1Þ

is projected to satisfy the constraints. The vector~rr is the residual

~rrðkÞ ¼~ff � /~ff
ðkÞ
, where ~ff

ðkÞ
is the solution from the previous outer iteration k. In

the restricted step version of the method proposed in [8], the solution is updated

according to ~ff
ðkþ1Þ

¼ ~ff
ðkÞ

þ 2�E~wwðkÞ
� �

signð~ff Þ
, where E is chosen to satisfy the Armijo

condition jj~ff � /~ff
ðkþ1Þ

jj2 < ð1� 2�EbÞjj~ff � /~ff
ðkÞ
jj2, where b is a small positive
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constant. The subscript sign (~ff ) refers to projecting the solution to satisfy the sign
condition. An upper bound, E 	8, is enforced to avoid too small ~ww. To make the line
search for E faster, the starting value of E is set to the optimal value obtained in the
previous iteration. Even with the restricted step, there is no guarantee that the sol-
ution improves after each iteration. So it is preferable to store the best solution. In
this article, we propose a different version of the PRIM algorithm, in which ki, the
number of inner-loop iterations of the unconstrained iterative solver at the kþ 1st
outer iteration, is decided by the relative change in the residual L2 norm according

to ki¼max (ki� 1, 1) if jj~rrðkÞjj=jj~rrðkþ1Þjj � 1 	 0:1.

Marshall and Grant (MG) Method

A quick scheme to solve the ill-conditioned problem /~SS ¼~ff is suggested in
[44], where ~SS is updated according to the following iteration:

S
ðkþ1Þ
j ¼

f jDt�
P

i2PðjÞ S
ðkÞ
i /ð~xxi;~xxjÞP

i2QðjÞ /ð~xxi;~xxjÞ
for j ¼ 1; . . . ;N ð46Þ

where Q (j) contains the set of elements which are within a small distance Ri from
element j, P (j) is its complement, and k is the iteration number. Choice of Ri and
convergence properties of the algorithms are discussed the results section.

NUMERICAL ALGORITHM

The numerical algorithm employed for simulating natural convection in
unbounded domains, for a typical time step k from tk to tkþDt, is as follows.

1. Compute the particle velocities,~uui; i ¼ 1; . . . ;N, as needed for the second-order
Runge-Kutta predictor-corrector time integration scheme. The vortical and
potential velocity components are computed using a fast O[N log (N)] algor-
ithm.

2. Update element positions [Eq. (14)] according to~xx�i ¼~xxi þ~uuiDt, for i¼ 1, . . . c,N
3. Solve the nonlinear diffusion problems for vorticity and temperature [Eq. (15)]

using the redistribution scheme, Eqs. (25)–(30), proposed for nonlinear diffusion.
4. ~xx

ðkþ1Þ
i ¼~xxi and E

ðkþ1Þ
i ¼ Ei for i¼ 1, . . . ,N.

5. Compute xð~xxiÞ, Tð~xxiÞ, and h ~xxiÞ ¼ ½1þ Tð~xxið Þ
�1dTð~xxiÞ=dt at particles posi-
tions. Approximate dT=dt ¼ ½Tð~xxiÞ � Tð~xxiÞðkÞ
=Dt with
Tð~xxiÞ ¼

PN
i¼1 Ei/rð~xx;~xxiÞ and Tð~xxiÞðkÞ ¼

PN
i¼1 E

ðkÞ
i /rð~xx;~xx

ðkÞ
i Þ.

6. Find the vorticity generated Dxð~xxiÞ at particle positions using Eq. (16).
7. Find the generated circulations DCi by solving the inverse problemPN

i¼1 DCi/rð~xx;~xxiÞ ¼ Dxð~xxiÞ.
8. Update the element circulations Cðkþ1Þ

i ¼ Ci þ DCi, for i¼ 1, . . . ,N.
9. Determine the particle (volumetric expansion) strengths S

ðkþ1Þ
i by solving the

inverse problem
PN

i¼1 S
ðkþ1Þ
i /rð~xx;~xxiÞ ¼ hð~xxiÞ.

10. Store elements positions ~xx
ðkþ1Þ
i , circulations Cðkþ1Þ

i , strengths S
ðkþ1Þ
i , and

energies E
ðkþ1Þ
i .
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RESULTS AND DISCUSSION

In the first subsection of this section, accuracy and speed of the smoothed redis-
tribution method proposed for nonlinear isobaric diffusion of an ideal gas are inves-
tigated for a diffusing hot patch. Comparison between the inverse problem solution
algorithms is carried out in the following subsection for appropriately chosen tem-
perature distributions. Finally, in the last subsection, simulations of buoyancy-driven
flow of a thermal patch in an unbounded domain are presented for different values of
Grashof number. Results are presented in terms of vorticity and temperature distribu-
tions at different times and impact of the time step on numerical convergence. Com-
parison between the proposed (maximum entropy) gradient projection solver and the
maximum L1 linear programming solver of Shankar et al. [58] is this discussed.

Nonlinear Isobaric Diffusion of a Hot Patch

To validate the proposed redistribution method for nonlinear isobaric diffusion
of an ideal gas, diffusion of a thermal path of initial temperature
T0ð~xxÞ ¼ E0=pr20

� 	
e�j~xxj2=r2

0 and r0� 0.1 is simulated. Radial temperature profiles
for aDt¼ 2.5� 10�5, 5� 10�5, 10�4, and 2� 10�4 are plotted in Figure 1a at t¼ 0.2
and t¼ 1 for E0¼ 0.2, corresponding to maximum initial temperature T0,max¼ 5.3.

Temperature distributions (T) predicted by the proposed scheme are compared
to numerical solutions (T�) obtained by converting the PDEs to ODEs using a
second-order-accurate spatial discretization with subsequent time integration of the
resulting ODEs using Runge-Kutta or variable-order schemes (depending on the stiff-
ness of the problem). The grid size is chosen to be Dr¼ 0.005 and time integration is
carried out with 0.01% relative accuracy. The comparison presented in Figure 1a
shows that the proposed nonlinear diffusion scheme predicts well the time evolution
of the temperature distribution in the patch in the presence of large temperature
gradients similar to those encountered in combustion. The %L2 relative error in the
temperature integrated over a uniform grid, computed as
100�

P
jriTi � riT

�
i j
2=
P

jriT�
i j
2, is plotted in Figure 1b versus the time step at dif-

ferent times. The error shows approximately linear dependence on Dt and is conse-
quently second-order in space, since h

2 / Dt. This accuracy is obtained despite the
fact that the core function employed is the Green’s function of the linear diffusion
equation with overlap r=h¼ 2 and that moments only up to mþ n¼ 2 are conserved.

Comparison of Algorithms for Solving the Inverse Problem

In this section, we investigate the performance of the unconstrained restarted
GMRES solver, constrained nonlinear optimization solvers (NLCG and NLSD),
the adaptive projected restarted iterative method (APRIM), and the Marshall and
Grant method. Note that for the constrained nonlinear optimization solvers and
the projected restarted iterative method, the irregularity measure (defined below) is
zero, since the generated circulations are constrained to have the same sign as the
generated vorticities at the element locations.

The inverse problem of vorticity generation is considered. The contributions of
flow acceleration and volumetric expansion to baroclinic vorticity generation are not
included in this test. Once the vorticity generated is computed, the element circulations
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that produce the generated vorticity will then be determined numerically by one of the
algorithms discussed in the section on grid-free handling of source terms. The gener-
ation time-step cost is the sum of that of calculating the generated vorticity, which
requires evaluation of the temperature and its gradient, at element locations and that
of solving the linear system for~SS. To speed up computation of the vorticity generated,
only those elements within a neighborhood of radius Rc contribute to the the vorticity
generated at a certain point.

Comparison of the various algorithms is carried out in terms of (1) cost, measured
as the ratio of the generation substep CPU time to the CPU time of single [O(N logN)]
velocity calculation, (2) accuracy of inversion, measured by jjejj2 ¼ jj/~SS �~ff jj2=jj~ff jj2,
(3) overall accuracy, measured as the relative L2 error on a uniform grid, given as

jjejj2;g ¼
DxDy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPng
i¼1

Pn
k¼1 Sk/rð~xxi;~xxkÞ � f ð~xxiÞ

� �2q
DxDy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPng
i¼1 f ð~xxiÞ

2
q ð47Þ

Figure 1. (a) Nonlinear isobaric diffusion of an ideal gas with E0¼ 0.2 (Tmax¼ 5.3). Symbols: finite differ-

ence numerical solution. Solid line: aDt¼ 2.5� 10�5. Long dashes: aDt¼ 5� 10�5. Short dashes:

aDt¼ 10�4. Dash-dot: aDt¼ 2� 10�4. (b) Convergence versus Dt at different times.
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where ng is the number of grid points with position vectors~xxi (the grid cell size is chosen
to be Dx¼Dy¼ h=2), and (4) irregularity, measuring the relative value of the generated
circulations with signs opposite to vorticities generated at the elements locations, i.e.,

I ¼
PN

i¼1 jSij 1� signðSif iÞ½ 
=2PN
i¼1 jSij

ð48Þ

First, we consider the case where the spatial distribution of the temperature is
given as

f ¼ 1

pr20
exp

�j~xxj2

r20

 !
ð49Þ

where r0 ¼ 66:67h and the number of elements is N¼ 160,000. The elements are ran-
domly distributed in a square of size one centered at (0, 0). The average element spa-
cing is h ’

ffiffiffiffiffiffiffiffiffi
1=N

p
¼ 0:0025 and the core radius is related to h through the overlap

ratio rE=h. The temperature distribution will be used to compute generated vorticity
over a time step Dt¼ 0.005 at the element locations. Computation of the generated
vorticity at element locations requires accurate and smooth capturing of the tempera-
ture gradient. In [35], it was shown that an overlap ratio rE=h � 3�5 is required for
smooth recovery of the temperature gradient. It can be argued, as will be seen, that
the reverse is true as well. Given an element distribution, the generated vorticity
computed from the inverse problem is smooth for overlap ratio rE=h � 3�5. Large
overlap ratios are, however, undesirable because of their negative impact on the
accuracy of convection.

The objective of this test is to investigate the performance measures discussed
above for the various algorithms for different values of the overlap ratio.

Figure 2a shows the impact of overlap ratio r=h on the accuracy and smooth-
ness of the solution. The generated vorticity contours (dashed lines) are compared to
the exact solution (solid lines) using three solvers: the GMRES-RES algorithm with
and without sign constraints and the MG algorithm. As seen in the figure, the accu-
racy and smoothness of the solution improves significantly as the overlap ratio r=h is
increased from 2 to 3. It is also observed that the GMRES-based algorithms perform
much better than the MG algorithm in terms of accuracy and smoothness. This is
confirmed in Figure 3a, where the L2 error on the uniform grid is plotted against
the inversion time (normalized by N logN velocity calculation time). Both the con-
strained and the unconstrained GMRES-based algorithms not only perform much
better than the MG algorithm, they also provide the possibility of reducing the error
at an increased cost. The MG algorithm does not possess this flexibility. Values of Ri

[see Eq. (46)] for which the algorithm does not diverge are restricted to Ri� r, with
Ri¼ r yielding the best performance presented in the figures. It is also observed in
Figure 3a that for smaller values of r=h the unconstrained GMRES-based algorithm
results in a smaller error than the constrained version for a given cost. So, why should
we choose the constrained version? The reason is that for large temperature gradients
and as the element spacing becomes more irregular due to large strain rates, the
unconstrained GMRES produces a solution with large irregularity [see Eq. (48)]. In
this case, the solution is nonphysical in the sense that elements may end up with a
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circulation of opposite sign to what should be. As an example, we increase the
temperature gradient by setting r0 ¼ 7h in Eq. (49). Figure 2b shows that while the
unconstrained GMRES-based solver yields the best solution of the inverse problem
in terms of accurately predicting the generated vorticity contours (dashed lines)
with jjejj2, g¼ 1.54� 10�3, it suffers from some irregularity, I¼ 0.1, manifested by cre-
ating positive circulation in regions of negative vorticity and vice versa. This can be

Figure 2. (a) Comparison of constrained and unconstrained solvers; generated vorticity contours for two

overlap ratios r=h¼ 2 and 3. r0=h¼ 66.67. (b) Comparison of constrained and unconstrained solvers in

terms of generated vorticity contours. The bottom figures show the element locations, where the light

and dark colors denote elements carrying circulations of opposite sign. Overlap ratio is r=h¼ 3 and

r0¼ 7h.
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observed in the lower left figure as an oscillating pattern of the sign of the element
circulation represented by gray for positive circulation and black for negative
circulation. In addition to irregularity, another way to quantify this behavior is by
calculating the errors in the total positive and negative generated circulations,
which are, respectively,

Pn
i¼1 jCþ

i � Cþ
i

� 	
exact

j=
Pn

i¼1 Cþ
i

� 	
exact

¼ 0:258 and
�
Pn

i¼1 jC�
i � C�

i

� 	
exact

j=
Pn

i¼1 C�
i

� 	
exact

¼ 0:258. As seen in the middle upper and
lower figures of Figure 2b, the constrained APRIM(GMRES-RES) solver does not
suffer from this drawback because it has zero irregularity by virtue of its constraints.
This advantage comes at a cost in the accuracy of inversion, where the generated vor-
ticity contours (dashed lines) with jjejj2,g¼ 8� 10�3 differ slightly from the exact
values (solid lines). The relative errors in total positive and negative generated circula-
tions are respectively 2.32� 10�2 and 2.35� 10�2. The MG algorithm stills suffers
from a noisy and inaccurate solution, seen in the right upper and lower figures of
Figure 2b, although the total positive and negative generated circulations are pre-
dicted accurately, with relative errors of 2� 10�2 and 1.45� 10�2, respectively.

In conclusion, the constrained inversion algorithm provides the best trade-off
between accuracy in both pointwise values (generated vorticity) and integral quanti-
ties (generated circulation) and cost. Comparison of the various constrained solvers
for the inversion problem shows that the APRIM method is superior to NLCG and

Figure 3. (a) Comparison of constrained and unconstrained solvers. (b) Relative error on grid versus

inversion time for the constrained solvers. Constrained APRIM(GMRES-RES) algorithm. (c) Impact

of the overlap ratio. (d) Impact of cutoff radius for r=h¼ 3. Inversion time is normalized by N log N

velocity calculation time.
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NLSD in terms of accuracy for a given cost. The relative L2 error on a uniform grid,
plotted in Figure 3b versus inversion time, shows that the constrained APRIM
(GMRES-RES) algorithm outperforms NLCG and NLSD by a significant margin.
The performance of the algorithm, however, is degraded for smaller values of the
overlap ratio r=h, as seen in Figure 3c. Finally, the impact of the cutoff radius Rc,
beyond which the coefficient in the matrix / is set to zero to reduce cost and storage,
is presented in Figure 3d. On the one hand, values of Rc=r <2.5 lead to large errors
due to the fact that the corresponding tails of the Gaussian core function are not
accounted for. On the other hand, values of Rc=r> 3 reduce the sparsity of the coef-
ficient matrix, thus increasing the cost for a given accuracy. A cutoff ratio of Rc=r �3
produces the best performance in terms of accuracy for a given cost.

Next, we employ the tools developed in this article to simulate a buoyancy-
driven flow according to the numerical algorithm presented previously.

Natural Convection of a Thermal Patch

We consider low Mach number natural convection of a thermal patch of an
ideal gas with an initial temperature distribution of T0ð~xxÞ ¼ E0=ðpr20Þe�j~xxj2=r2

0 with
r0 ¼ 0:25;E0 ¼ T0;maxpr20, where T0,max is the maximum initial temperature. For this
problem, all the components contributing to vorticity generation are included. Non-
linear diffusion of vorticity and temperature is computed according to the smooth
redistribution method using the maximum entropy gradient projection algorithm
described previously. Vorticity generation at element locations due to baroclinic
effects and volumetric expansion is converted to changes in element circulations
using the constrained APRIM(GMRES-RES) method discussed earlier. In addition
to the velocity component due to vorticity, the velocity component due to volumetric
expansion is also included.

In all the simulations, Prandtl number is set to 1 (a¼ n and r¼ rE¼ 3h). Simu-
lations are presented for two sets of cases. The first set consists of three values of
Grashof number, Gr ¼ gT0;max 2r0ð Þ3=n2 ¼ 1; 562:5; 6; 250, and 25,000, correspond-
ing to n¼ 0.02, 0.01, and 0.005, with T0,max¼ 0.5. The second set consists of three
values of Grashof number, Gr¼ 6,250, 12,500 and 25,000, corresponding to
T0,max¼ 0.5, 1, and 2, with n¼ 0.01. Impact of time step on the convergence of the
method is investigated for the case Gr¼ 6,250 for three values of the time step,
Dt¼ 0.005, 0.01, and 0.02.

Vorticity and temperature distributions. Vorticity and temperature con-
tours at t¼ 1, 2, 3, 4 are shown in Figure 4 for the first set of cases with Grashof num-
ber Gr¼ 1,562.5, 6,250, and 25,000, corresponding to n¼ 0.02, 0.01, and 0.005,
respectively, with T0,max¼ 0.5. The time step is Dt¼ 0.005 and the overlap ratio is
r=h¼ 3. It can be observed that, except for the role of diffusion in spreading out tem-
perature and vorticity, the three cases are similar. Initially, vorticity is generated at a
high rate due to the localized gradients of the temperature distribution. The two vor-
tices pull each other and speed upwards. As time progresses, thermal diffusion weak-
ens the temperature gradients, thus generating less vorticity. This is further illustrated
in Figure 5a, which shows the time evolution of the total positive generated circu-
lation, where the cases with smaller viscosity experience slight oscillatory behavior.
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This behavior is more pronounced in the speed of the mean vertical thermal position,
given by dð

R
yTdV=

R
TdVÞ=dt, plotted against time in Figure 5b. The flows in all of

the cases considered experience the same steady rise from t¼ 0 to t� 0.3, after which
they experience oscillatory decelerating behavior. It is further observed that as the vis-
cosity decreases, both amplitude and frequency of these oscillations increase. It can
also be observed from Figure 4 that the rolling vortices entrain cold air, creating
reverse temperature gradients which introduce pockets of vorticity above the main
vortices of opposite sign.

Results for the second set of cases are presented in Figures 5c, 5d, and 6. The
total positive circulation is plotted against time in Figure 5c for the cases Gr¼ 6,250,
12,500, and 25,000 with T0,max¼ 0.5, 1, and 2, respectively, with n¼ 0.01. As
expected, more vorticity is generated for larger T0,max, due to the larger temperature
gradient. For example, at t¼ 3, the total positive circulations are 9.6, 14.3, 21.38 for

Figure 4. Vorticity (left half) and temperature (right half) contours for the cases n¼ 0.02, 0.01, and 0.005.

Temperature contour values (inwards): 0.0001, 0.001, 0.01, 0.5, 0.15. Vorticity contour values (inwards):

positive (solid): 0.1, 1, 2, 5, 10 and negative (dashed): �0.1, �1, �2, �5, �10. T0, max¼ 0.5 and r=h¼ 3.
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T0,max¼ 0.5, 1, and 2 respectively. It can also be seen that for the case T0,max¼ 2, the
total positive circulation experiences some drop at �t¼ 0.6, but then increases again
at �t¼ 0.7. This may be attributed to the combined interaction of entrainment of
ambient temperature fluid of negative vorticity (see Figure 6) and diffusion, which
together reduce the positive circulation. The same happens to the total negative cir-
culation. The speed of the mean thermal position, presented in Figure 5d versus time,
shows that the higher T0,max flows rise at a higher speed due to the larger circulation

Figure 5. (a) Total positive circulation and (b) Speed of the mean thermal position versus time for the

cases n¼ 0.02, 0.01, and 0.005, T0, max¼ 0.5 and r=h¼ 3. (c) Total positive circulation and (d) Speed of

the mean thermal position versus time for the cases T0, max¼ 0.5, 1, and 2, n¼ 0.01 and r=h¼ 3. (e) Total

positive circulation and (f) Speed of the mean thermal position versus time for Dt¼ 0.02, 0.01, 0.005 for

case of Gr¼ 6,250 and r=h¼ 3.
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generated. In the deceleration phase, strong oscillations are observed for larger T0,

max. This is again attributed to the stronger role of convection at the expense of
diffusion in moving the temperature gradient and entraining cold fluid of opposite
vorticity. Notice from Figure 6 that for the case T0,max¼ 2, entrainment starts at
t� 0.35, which is about the same time the oscillating decelerating phase begins.

Impact of the time step. The impact of time step is investigated for the case
Gr¼ 6,250, n¼ 0.01, T0,max¼ 0.5, and r=h¼ 3. The time evolution of the total posi-
tive vorticity for Dt¼ 0.02, 0.01, and 0.005, shown in Figure 5e, shows that the
method exhibits good convergence over the time steps selected. The speed of the mean
thermal position versus time, plotted in Figure 5f, shows that the method is able to
capture both the steady rising phase and the oscillatory decelerating phase even for
Dt¼ 0.02, which is considered a large time step in view of the strong convection

Figure 6. Vorticity (left) and temperature contours (solid lines on right) for the case Gr¼ 25000 with T0,

max¼ 2, n¼ 0.01 and r=h¼ 3.
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currents established by buoyancy. Figure 7a shows the vorticity contours at t¼ 4 for
the time steps Dt¼ 0.01 and Dt¼ 0.005. Two observations can be made. The first is
that there is a slight offset with the vorticity distribution for Dt¼ 0.01 being slightly
elevated relative to that for Dt¼ 0.005. This is consistent with the fact that in the for-
mer case slightly more vorticity is generated than in the latter case, as confirmed in
Figure 5e. This is attributed to the choice of a large overlap ratio r=h¼ 3, which intro-
duces some error in the convection due to the fact that elements are convected with
the velocities at their centers. It was shown in [35] that smaller values of the overlap
ratio improve the accuracy of convection at the expense of smoothness in vorticity
and temperature. This is, in particular, a serious problem when the temperature gradi-
ent is the dominant mechanism governing the flow, which is the case for natural
convection. The second observation is that the larger deviations in vorticity between

Figure 7. (a) Vorticity contours at t¼ 4 for the time steps (solid) Dt¼ 0.005 and (dashed) Dt¼ 0.01.

Gr¼ 6,250 and n¼ 0.01, r=h¼ 3. (b) Vorticity contours comparison. Redistribution using min L1 linear

programming [58] (dashed). Redistribution using maximum entropy method using interior point projec-

tion method (solid). Gr¼ 6,250, r=h¼ 2, Dt¼ 0.01. (c) Comparison of computational time of the dif-

fusion step using Shankar’s min L1 linear programming with maximum entropy method using interior

point projection method. Also shown are convection time and vorticity generation time.
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the two time steps are at regions of small vorticity, which is expected given that cutoff
values are employed for energy and circulation to limit the increase in the number of
elements, which takes place in the diffusion step. It must be pointed out that in natu-
ral convection, vorticity generation is strongly tied to the temperature gradient, which
may be large even in regions of low temperatures. The vorticity field, in turn, moves
the temperature and its gradient about. So both the vorticity and the temperature
fields must be accordingly well resolved. To guarantee that the method generates
vorticity correctly, both the cutoff energy and the cutoff circulation are set to a small
fraction (0.001) of the maximum circulation and energy among the elements at a given
time. This enables the method to accurately predict the vorticity generation even
when the maximum temperature drops below 0.05.

Cost and Performance of the Maximum Entropy
Redistribution Algorithm

The costs of the convection step, the diffusion step, and the generation step, pre-
sented in Figure 7b, show that the diffusion and the generation steps together cost
slightly less than the convection step, which consists of twoO(N logN) computations.
The plot also shows the significant reduction in the cost of the maximum entropy
gradient projection method for redistribution compared to the min L1 linear pro-
gramming scheme. It should be noted, however, that the SIMPLEX algorithm
employed in the comparison is not identical to that employed in [58]. In terms of accu-
racy, the two algorithms perform virtually the same, as observed in the vorticity con-
tours of Figure 7c, with some difference in regions of small vorticity.

CONCLUSION

Grid-free vortex methods were developed for simulation of buoyancy-driven
ideal gas flows at low Mach number in two-dimensional unbounded domains. The
smoothed redistribution method for diffusion was extended to handle nonlinear iso-
baric diffusion of an ideal gas. To this end, the maximum entropy gradient projection
method, proposed to solve for the redistribution fractions, is shown to have the desir-
able accuracy and speed. The inverse problem relating element circulations to the vor-
ticity generated due to baroclinic effects and volumetric expansion is solved using the
GMRES-based adaptive projected restarted iterative method subject to the constraint
that the circulation must have the same sign as the vorticity generated at an element’s
position. The superiority of the APRIM algorithm, when compared to the other algo-
rithms, arises from its flexibility and its ability to yield a physical solution with desir-
able accuracy. Performance of the proposed grid-free vortex method is investigated
through simulations of natural convection of a thermal patch for different values
of Grashof number.
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