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a b s t r a c t 

An efficient parallel multi-scale direct simulation Monte Carlo algorithm to simulate three-dimensional 

rarefied gas flows over complex geometries is presented. The proposed algorithm employs a novel spatio- 

temporal adaptivity scheme. Based on the gradients of flow macro-properties, the spatio-temporal adap- 

tivity scheme computes the cell size distribution and assigns the appropriate number of time sub-steps 

for each cell. The temporal adaptivity scheme provides local time step adaptation through different tem- 

poral levels employed in different cells. Spatial representation is based on a hierarchical octree Carte- 

sian grid with low memory storage requirement. The hierarchical octree grid endows the method with 

straightforward and efficient data management suitable for particle ray tracing and dynamic grid refine- 

ment and coarsening. Solid objects, represented by triangulated surfaces, are incorporated using a cut-cell 

algorithm. A new parallelization scheme suitable for simulating strongly unsteady, non-equilibrium flows 

is proposed. The parallelization scheme, implemented for multi-core Central Processing Units (CPUs), sig- 

nificantly reduces the computational cost of modeling these flows. Performance of the method is assessed 

by comparing with benchmarked test cases for various rarefied gas flows. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Micro and nano-technologies are advancing rapidly, and the

omputational tools to predict the flow dynamics efficiently and

ccurately at these scales are continuously in demand. Gas flows

n Micro and Nano devices are typically rarified and usually fall

nto the slip and transition flow regimes with a Knudsen num-

er range 0 . 001 < Kn < 10 [1] . The direct simulation Monte Carlo

DSMC) method [2] is the most widely used computational tool for

fficiently simulating fluid flows at these scales. The method has

een successfully applied to investigate physical phenomena in a

ide range of applications. These include shock waves [2] , space-

raft aerodynamics [3] , squeeze-films and oscillating microstruc-

ures [4] , microsensors [5] , microfluidics [6] , and various rarefied

ows in micro/nano-systems [7] . 

The geometry model in DSMC simulations refers to both the

omputational mesh of the flow domain and the surface represen-

ation of solid objects. Two primary approaches for the geometry

odel in existing state-of-the-art DSMC solvers have been used.

hese include body-fitted unstructured grids such as in MONACO

8] and dsmcFOAM [9] , and Cartesian structured grids such as in
∗ Corresponding author. 
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AC [10] , SMILE [11] , Bird’s DSnV [12] , MGDS [13] , and SPARTA

14] . Table 1 gives an overview of the geometry and general fea-

ures of commonly used DSMC solvers. These algorithms can run

ith a single processor or in parallel using the Message Passag-

ng Interface (MPI) library on multiple processors. The spatial do-

ain decomposition parallelization method is often used. This fla-

or of parallelization suffers from two drawbacks. The first is the

hallenge of load balancing and distributed storage of the com-

utational domain. This challenge is particularly severe when the

olver employs a spatio-temporally adaptive algorithm that dy-

amically adjusts the computational grid and the time step in re-

ponse to the evolving flow field structures in unsteady flows. The

econd challenge is that the criteria for spatio-temporal adaptivity

re based on macroscopic properties computed as averages over a

tatistically meaningful number of realizations (a realization is a

SMC simulation initiated from a unique random number gener-

tor seed). This latter observation suggests parallelization over in-

ependent realizations. In the proposed framework, each thread or

ore processes a realization of the simulation of the unsteady flow

ver the entire computational domain. 

Bird [2] points out that dynamic grid adaptation is a main

oncern when applying the DSMC method to multi-dimensional

roblems and states that an ideal DSMC grid must fulfill three

equirements: high computational efficiency, grid adaptation to

https://doi.org/10.1016/j.compfluid.2019.03.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.03.007&domain=pdf
mailto:issam.lakkis@aub.edu.lb
https://doi.org/10.1016/j.compfluid.2019.03.007
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Table 1 

Overview of geometry and general features of the well-known DSMC solvers and the presented one. 

DSMC Algorithm Grid Struc- 

tured/Unstructured 

Parallel Processor 

Distribution 

Spatial adaptivity 

criteria grid 

adaptation 

Temporal adaptivity criteria 

time step 

Other 

MONACO Unstructured grid Over grid Based on λ Single fixed time step Localized data structure Ray tracing through an 

unstructured grid 

dsmcFOAM Unstructured grid Over grid Based on λ Single fixed time step openFOAM C + + toolbox 

DAC Two-level Cartesian 

grid 

✗ Based on λ Variable time step Variable 

particle weight 

Cut-cell method Restricted distribution to US 

users Parallel processing capabilities 

DSnV Cartesian grid ✗ Based on N sim Variable time step ✗ 

SMILE Cartesian grid ✗ Based on λ ✗ Cut-cell method Parallel processing capabilities 

MGDS Three-level 

Cartesian grid 

Over grid Based on λ Variable time step Variable 

particle weight 

Cut-cell method Ray tracing through a 

Cartesian grid 

SPARTA Hierarchical 

Cartesian grid 

Over grid Based on λ Single fixed time step Highly probable C + + Run one/multiple 

simulations simultaneously in parallel 

Code Presented Hierarchical 

Cartesian grid 

Over realization Based on λ & N sim Variable time step Different 

Temporal levels 

Octree-based Cartesian grid Geometric tools in 

computer graphics Ray tracing through a 

structured grid Spatio-temporal adaptivity 

scheme 
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arbitrary geometries as well as to local flow conditions. Besides

parallel computing implementation, fully automated mesh adapta-

tion of the flow field can effectively save computational cost and

provides efficient management of grid resolution. While time step

adaptation depends on the local mean collision time, the adapta-

tion of collision grid cells is based on the local mean-free-path,

the number of simulated molecules, and other aspects such as the

presence of surface meshes. The use of a single fixed time step

is computationally inefficient when localized high-density gradi-

ents regions exist in the computational domain. In such flows,

different time steps are needed in different parts of the domain,

which calls for an automated adaptive time stepping scheme. With

variable time steps, a single iteration of the DSMC algorithm no

longer represents the same amount of physical time in each colli-

sion cell [15] . One way to tackle this challenge is proposed by Kan-

nenberg and Boyd [15] , where the disparity in the elapsed time

is accounted for by weighting all particles by a time scale fac-

tor, defined as the ratio of the local time step to the reference

time step for the simulation. The use of varying time steps ac-

cording to this scheme increases computational efficiency by re-

ducing the number of simulated molecules in the computational

domain while maintaining relatively uniform molecule distribution

and sufficient molecules for obtaining accurate collision statistics

per cell. Implementations, such as DAC [10] and MGDS [13] , that

use variable scaling of particle weighting with spatially dependent

time-steps are common. In the DAC algorithm, however, the par-

ticle weight and time step size vary independently. This requires

cloning or deleting molecules to guarantee a balance of flux when

the molecule crosses one collision cell to the next. A different ap-

proach for handling variable time steps was presented as a recent

improvement to the DSMC algorithm in [16] , and has been imple-

mented in a recent work done by Wade et al. [17] . This approach is

based on updating a desired local time step (DTS) for each collision

cell, which is set to the minimum of user-specified fractions of the

relative collision and transit times of the cell. A time parameter is

assigned to all molecules and to all collision cells in which each

molecule in a particular cell inherits the time step of that cell. The

flow time is advanced in steps equal to the smallest value of DTS

over all cells in the computational domain. The cell and molecule

time parameters are advanced based on the flow time and the DTS

values within the cells. 

In this paper, we present a novel three-dimensional DSMC algo-

rithm for simulating unsteady gas flows in complex domains. Novel

aspects of the proposed algorithm include parallelization over re-

alizations and a new spatio-temporal adaptation scheme. The flow

domain is represented by a hybrid mesh consisting of a hierar-

chical octree-based Cartesian grid [18,19] , whereas the surfaces
f solid objects are represented by a triangular mesh. A cut-cell

ethod to simulate flows around immersed objects of complex

oundaries is implemented [20] . For near-boundary computational

ells that are cut by the true physical boundary of the solid ob-

ect, the method computes the effective volume of cut-cells for ac-

urate prediction of molecular collisions and macroscopic proper-

ies in these cells. The cut-cell method also allows for decoupling

f the flow field mesh from the solid boundaries surface mesh,

aking it suitable for simulating near-continuum flows with large

ensity variations. The hierarchical octree-based Cartesian grid

epresentation of the domain allows for efficient data storage and

anagement that is compatible with the spatio-temporal adapta-

ion scheme. When compared to unstructured meshes, such rep-

esentation significantly improves memory requirement and is,

herefore, more suitable for simulating large-scale DSMC problems.

he hierarchical octree-based Cartesian grid representation also

nables a potentially more general scheme for varying cell vol-

mes over a large range of the molecular length scales. The hy-

rid mesh representation allows for simple integration of a variety

f effective geometric tools used in computer graphics, including

ast particle-tracing algorithms. This enables DSMC calculations to

e performed with less number of operations, such as in succes-

ive grid adaptation, particle movement, and particle sorting. The

ynamic spatio-temporal adaptation scheme is based on the local

acroscopic flow properties which are computed as statistical av-

rages over a number of realizations. Instead of advancing with

ost limiting (smallest) time step, the scheme handles spatial de-

endence of the time step by employing a number of discrete tem-

oral levels. The method implements a smart algorithm that ef-

ciently loops over these levels, in descending order of the time

tep size, where within each loop, all cells sharing the same time

tep are handled. An additional feature of the DSMC algorithm pro-

osed in this work is that it is optimized for simulating unsteady

ows in parallel over multiple cores. In contrast with distributing

he computational domain over the cores (or threads, or CPUs), the

ndependent realizations are distributed over the cores. Due to the

ack of communication between the cores when each is handling

n independent realization, the parallelization efficiency is almost

00%. Besides, this type of parallelization is optimal when simulat-

ng highly unsteady rarefied flows over complex geometries. These

ows typically experience considerable variability in the spatial

radients of the macroscopic thermodynamic properties, and as

uch, spatial adaptation needs to be frequently carried out. With

ach core being assigned a DSMC realization, local flow proper-

ies at different time steps are collected simultaneously in paral-

el and averaged over the multicores for local mesh refinement.

able 1 presents an overview of the geometry and general features
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f the proposed DSMC solver in comparison with existing state-of-

he-art DSMC solvers. 

This paper is organized as follows: Section 2 summarizes

he DSMC methodology. In Section 3 , we present the three-

imensional hybrid mesh scheme. Section 4 discusses the effective

hree-dimensional particle ray-tracing scheme. The spatio-temporal

daptivity scheme is presented in Section 5 . Results for several

enchmark DSMC simulations are presented in Section 6 . Finally,

ection 7 concludes the paper. 

. DSMC methodology 

Among the particle simulation methods, DSMC, pioneered by G.

. Bird in the 1960s [2] , is the most powerful numerical technique

or the simulation of complex, non-equilibrium rarefied gas flows.

he DSMC method emulates the physics of a real gas and pro-

ides a solution to the non-linear Boltzmann equation. It follows a

epresentative set of randomly selected simulated molecules, each

epresenting a large number of physical molecules, as they collide

nd move in physical space. The molecules’ motion, their interac-

ions with boundaries and intermolecular collisions alter with time

heir spatial coordinates, velocity components, and their internal

nergies. Molecular motions are modeled on a deterministic basis,

hile their collisions are treated on a probabilistic basis according

o an appropriate collision model. The Simulation of the real gas

ow is carried out by statistical sampling of the macroscopic flow

roperties in grid cells discretizing the physical space of the flow

eld. 

Accuracy of the DSMC method is highly dependent on the dis-

retization of space and time. The collision grid cell size, �x , must

e small compared to the local mean free path, λ∼ | π / ∇π |; the

ength scale characterizing the spatial variations of the macro-

copic properties, π . So, we choose �x �λ, where λ gener-

lly varies with space and time. The simulation time step, �t ,

ver which molecular motions and collisions are uncoupled must

e smaller than the local mean collision time, �t < τc = λ/ v mp ,

here v mp is the most probable velocity. The number of simulated

as molecules per cubic mean free path, N , must be larger than

 minimum (typically 20 molecules) to preserve collision statistics

nd for the molecules to yield a reasonable approximation of the

ocal velocity distribution function. Unless the gas is highly rar-

fied and the simulation domain is small, the constraints on �x ,

t , and N make DSMC computationally expensive. Thus, adaptive

echniques are required in hypersonic near-continuum flows span-

ing a wide range of length and time scales. 

The interaction of simulated molecules with physical bound-

ries is an important boundary condition in DSMC simulations.

olecule-surface interactions include solid wall boundaries (e.g.

hermal walls), periodic boundaries, and inflow/outflow bound-

ries. A given gas-solid surface interaction can be treated as be-

ng fully specular, fully diffuse, or a combination of the two.

he inflow/outflow boundary conditions can accommodate super-

onic and subsonic flows. They are implemented by injecting par-

icles into the computational domain at the external flow condi-

ions. Two methodologies are proposed for their implementation

n DSMC: standard and reservoir method. The standard method

nvolves a particle emission surface set at the flow boundary [2] .

he well-known Maxwellian Reservoir method employs ghost cells

t the boundaries of the DSMC computational domain that act as

inks and sources of the simulation particles [21] . The velocity of

he molecules entering the flow field is generated according to the

elocity distribution of the external flow. 

Simulating molecular collisions is a statistical process which al-

ows DSMC to achieve faster numerical performance than deter-

inistic simulation methods such as molecular dynamics. Roohi

t al. [22] reported a comprehensive review of the different
ollision models developed in the framework of the DSMC method.

he popular collision scheme employed in DSMC is the No-Time-

ounter (NTC) method introduced by Bird in 1994 and used in con-

unction with the sub-cell method [23] . In the NTC collision proce-

ure, the number of possible collision pairs that should be checked

or collision within a collision cell of volume V c over a time step

t , is defined as: 

 collisionpairs = 

N N F N ( σT v r ) max �t 

2 V c 
, (1) 

here N is the instantaneous number of simulated molecules in

 cell, N̄ is the time average number of simulated molecules in

 cell, F N is the number of real molecules represented by each

imulated molecule, σ T is the total collision cross section, and

 r is the relative speed in the collision. In 2007, Bird has pro-

osed a modification to the NTC method where N ( N − 1 ) /V c re-

laces N ̄N /V c [24] . Thus, if �t is kept constant and the volume V c 

s divided into eight octants, we obtain N collisionpairs ∼ 8( N 8 )( 
N 
8 − 1)

t/ ( V c 8 ) ∼ N(N − 8)�t/V c , which means that N collisionpairs is con-

erved as long as N � 1. Furthermore, if N and V c are kept constant

nd �t is divided by m , then N col l isionpairs ∼ N(N − 1) m (�t/m ) /V c 
nd N collisionpairs is conserved if we carry m collisions. 

Several collision models, designed to reproduce the real macro-

copic flow behavior, were applied successfully to numerous DSMC

imulations ranging from micro/nano flows to hypersonic flows.

hese models include the inverse power law model, the hard

phere (HS) model, the variable hard sphere model (VHS), and the

ariable soft sphere (VSS) model [2] . In the VSS model, the mean

ree path is given as: 

VSS = 

4 α(7 − 2 ω)(5 − 2 ω) 

5(α + 1)(α + 2) 

(
μ

n 

)
(2 πmk B T ) 

−1 / 2 

μ = μre f 

(
T 

T re f 

)ω 

(2) 

here m is the molecular mass, n = ρ/m is the number density,

ref is the viscosity at reference temperature, k B is the Boltzmann

onstant, α is the scattering parameter ( α = 1 for VHS model), and

 is the temperature. The viscosity index ω is the power expo-

ent of temperature in the viscosity law given by ω = 

1 
2 

η+3 
η+1 . η

s the repulsive power exponent in the inverse power law model,

 = K/r η, where F is the force, K is constant, and r is the dis-

ance between molecules. The values of ω and η for the HS model,

he VHS model (and also the inverse power law IPL), and for the

axwellian molecule are respectively 1/2 and ∞ , 0.75 and 9, and

 and 5 [25] . 

In the HS model, the mean free path is expressed as: 

HS = 

1 √ 

2 πd 2 n 

(3) 

here d is the molecular diameter. 

The mean collision time is related to the mean free path λ and

o the most probable velocity v mp = 

√ 

2 k B T /m by 

c = 

λ

v mp 
∼ λ√ 

T 
(4) 

t can be seen from the above equations that the mean free path

nd the mean collision time are inversely proportional to the num-

er density as: 

λ ∼ T α
∗

n 

c ∼ T α
∗−0 . 5 

n 

(5) 

here α∗ ∈ [0 , ω − 1 / 2] ; α∗ = 0 for HS model. 

The DSMC simulation starts from a set of prescribed initial con-

itions and proceeds in small time steps discretizing the physical
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Fig. 1. (a) The schematic of the time-averaging of the flow properties over a long interval of simulation time. (b) The schematic of the ensemble-averaging of the flow 

properties over three independent DSMC simulations, each initiated from a different random number generator seed [26] . 
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time in the real flow. Fig. 1 illustrates the two sampling meth-

ods used in DSMC: steady and unsteady sampling techniques. For

predicting steady flows, each independent Monte Carlo simulation

proceeds until a steady behavior is established at a sufficiently

large time. Time-averaging of the macroscopic flow quantities over

a number of time steps is required to reduce statistical fluctuations

and obtain smooth results. For simulating unsteady flows, ensem-

ble averaging of many independent Monte Carlo simulations, each

originating from a different random number generator seed, is car-

ried out to obtain final results with acceptable statistical accuracy.

The flow field is sampled at the appropriate flow sampling time

steps, denoted by dark bands in Fig. 1 . Unsteady flow sampling to

yield the macroscopic flow quantities at a given time requires av-

eraging over all the independent realizations of the transient sim-

ulations at that time. 

3. Three-dimensional hybrid mesh scheme 

In the current study, an octree-based Cartesian grid divides the

computational domain into cubic cells, whereas the surface of the

3D solid object is triangulated using the preprocessing open-source

software SALOME 7.5.1 [27] . Tree-based methods with the simple

Cartesian structure and embedded hierarchy make use of recursive

encoding schemes. These schemes render processes such as mesh
Fig. 2. (a) Schematic representation of a triangulated surface mesh of a sphere embedd
daptation, rebuilding, data access, and handling of fluid-solid in-

eraction both simple and efficient. 

Each solid object is bounded by a rectangular box. An axis-

ligned box-box intersection test [28] is then carried out to iden-

ify collision cells neighbors and all cubic cells that overlap with

he bounding box surface. In addition, the fast 3D triangle-box

verlap testing by Moller [29] is implemented to test overlapping

etween triangular elements of the solid object surface mesh and

ubic cells inside the bounding box. This test enables linking each

urface mesh triangular element to the overlapping Cartesian cells.

ig. 2 (a) shows a schematic diagram illustrating the hybrid mesh

cheme. The proposed three-dimensional hybrid mesh scheme em-

loys a flexible data structure which enables simulation of particles

ovement and sorting processes with fewer operations, thereby

educing the CPU time. 

Special treatment of the cells being crossed by the solid bound-

ry, i.e., the so-called cut-cells, is also applied. Fig. 2 (b) shows a

oomed-in view of the box bounding the solid object (sphere) and

 cut-cell representation. The Monte Carlo random marker cut-

ell method is implemented in this work [20] . It is used to es-

imate the cut-cell effective volume needed to accurately model

ollisions and predict the macroscopic properties in the cut-cell.

his method is one of the two main cut-cell methodologies for

SMC simulations of rarefied gas flows around moving obstacles. It
ed in a 3D octree Cartesian grid. (b) Bounding box and a cut-cell representation. 
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erforms two main functions: First, all triangular surface elements

re sorted into the appropriate octree Cartesian cells within the

eometry data structure. Second, a number of particles, N p , is ran-

omly generated within each cell with a volume V . Possible in-

ersections between a ray going out from a particle and directed

long the unit normal vector of a given surface triangle element

re determined. If no intersections occur with all surface trian-

le elements within the cell, the particle lies inside the flow field.

hen, the volume of the cut-cell is simply determined by dividing

he fraction of particles determined to lie within the flow field, N c ,

y the total number of Monte Carlo particles considered, N p , as:

 c = V 
(
N c /N p 

)
. 

. Three-dimensional particle ray-tracing scheme 

Molecular movement constitutes a significant fraction of the

omputational cost in a DSMC simulation. Simulated molecules

ove along linear trajectories defined in a vector form as r f =
 i + v �t, where r f is the final position of the particle, r i is the

nitial position vector, and �t is the simulation time step. To

chieve both robustness and efficiency in tracking particle move-

ent within the hierarchical octree-based Cartesian grid, a special

article ray-tracing technique is employed. This technique is used

n the vicinity of the solid object surface where the region of the

ounding box is treated as follows. During a single time step, a

olecule cannot move more than one collision cell size along each

imension (a DSMC time constraint). Ray tracing is performed only

or particles that leave their assigned cell and intersect the box

ounding the solid object. If an intersection with the bounding box

ccurs, a cell-by-cell particle tracking procedure is performed to

etermine whether the particle reaches a boundary surface trian-

le, stays in or leaves the current cell. If no ray-triangle intersec-
ig. 3. The schematic of running transient DSMC simulations on different threads. Top 

onsisting of M time steps. N s C realizations r ijk , j = 1 . . . N s , k = 1 . . . C, are averaged eve

utions at output time step N o . The decision to include a new set of N s C transient simu

acroscopic properties of the last NC realizations and the previous (N − N s ) C realization

daptivity is carried out for all threads every N a = T a / �t time steps. C realizations r ijk , k

teps i = N a , 2 N a , . . . , M) to estimate the macroscopic properties distributions needed fo

he associated temporal levels distribution for the time intervals [ T a + �t, 2 T a ] , [2 T a + �t

ubsequently updates the distribution of cell sizes and temporal levels, the threads pause
ion occurs, the particle’s position is updated if the particle stays

n the current cell; otherwise, ray-box intersection tests with all

ossible neighbour collision cells are performed to track the parti-

le from the current cell to its nearest neighbour collision cell. The

article-tracking algorithm is then invoked again to move the par-

icle over the remainder of the time step. At the completion of the

olecular movement phase, each particle is automatically stored

ithin its final cell by the sort subroutine. In summary, the hierar-

hical octree-based data structure allows for efficient intersection

esting within the ray tracing algorithm. We point out here that

he grid cells are axis-aligned boxes whose edges are all parallel to

he basis vector, which enhances the efficiency. 

. Spatio-temporal adaptivity scheme 

A unique feature of the proposed algorithm is that it runs tran-

ient parallel Monte Carlo simulations simultaneously and inde-

endently on multicore CPUs. Most DSMC solvers are parallelized

hrough decomposition of the physical domain into groups of cells

hat are distributed among the processors. The efficiency of such

arallelization scheme may suffer due to the intensive communica-

ions between the processors and load imbalance among the pro-

essors. The spatial domain decomposition parallelization scheme

s convenient for simulating low speed flows where a uniform

artesian grid is used, and high-gradient flows where grid reso-

ution in both space and time is evoked once before steady state is

eached. In contrast, the proposed parallelization scheme is more

uitable for simulating highly unsteady rarefied flows. The length

nd time scales in such flows vary considerably over the do-

ain. Thus, frequent spatio-temporal adaptation for variable res-

lution of the different flow regions is required. The upper dia-

ram in Fig. 3 shows a schematic representation of the proposed
Diagram: Each thread runs sequentially N realizations of the transient simulation 

ry output time interval, T o = N o �t, to compute the macroscopic properties distri- 

lations (increment N by N s ) is based on the relative statistical difference between 

s. Note that N is an integer multiple of N s . Bottom Diagram: The spatio-temporal 

 = 1 . . . C are averaged (by the sniffer) at t = T a , 2 T a , . . . , T f (corresponding to time 

r the spatio-temporal adaptivity criteria. These criteria will set the grid size and 

, 3 T a ] , . . . While the sniffer carries out sampling of the microscopic properties and 

. Once the sniffer completes its task, the threads resume. 
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Fig. 4. Temporal adaptation algorithm within the DSMC code. N l : number of tem- 

poral levels in the domain; 2 l : number of time steps in temporal level l ; �t l : time 

step in temporal level l . 

w  

u  

c  

c  

d  

d  

m  

t  

a

 

 

s  

t  

l  

g  

p  

r  

s  

s  

t  

o  

t  

i  

t  

o  

l  

a  

b  

d  

m  

a  

a  

(  

t  

t  

t  

t  

c  

p  

t  
parallelization scheme using multiple threads. Each thread runs

sequentially N realizations (each initiated from a unique random

number generator seed) of the transient DSMC simulation consist-

ing of M time steps. The realizations from different threads are

averaged (by a SNIFFER algorithm) to compute the macroscopic

properties distributions at flow sampling time steps. Due to the

lack of communication between the threads when each is handling

an independent realization, the parallelization efficiency is almost

100%. 

The proposed algorithm employs a novel spatio-temporal adap-

tivity scheme to dynamically adjust local grid spacing and time

steps, and to accurately resolve local flow features. The kinetic

spatial scale, defined by the mean free path λ, and the temporal

scale, defined by the mean collision time, τc = λ/ 
√ 

2 kT /m , are cal-

culated according to the binary elastic collision model used in the

DSMC simulation. Prior to the adaptation process, the DSMC simu-

lation starts with a uniform mesh. As depicted in the bottom di-

agram of Fig. 3 , spatio-temporal adaptivity is carried out for all

threads every T a , where T a is the spatio-temporal adaptivity time

interval. This parallel process is frequently interrupted by the SNIF-

FER (serial) algorithm to compute the macroscopic properties from

the average of the realizations from different threads and subse-

quently set the grid size and the associated temporal levels dis-

tributions. The additional cost of the SNIFFER serial activity is very

small and the measured parallelization efficiency of the paralleliza-

tion scheme including the SNIFFER is more than 95%. 

Spatial adaptation of collision cells follows the conventional

DSMC constraint on the collision cell size, �x c = αc λ, where αc 

is a user-defined collision cell size factor. The DSMC constraint on

the minimum number of simulated molecules per collision cell,

N min , must be preserved in spatial adaptation process to disallow

collision cells with too few molecules. It is concluded from pre-

vious DSMC studies [30] that it is necessary that the cell size is

constrained to be less than one-third of the local mean-free-path,

αc ∈ [1/4, 1/2], and the number of simulated molecules per cell

should exceed 20 (N min > 20) for slip flows and 10 (N min > 10) for

transition flows. Spatial adaptation involves two processes: refine-

ment and coarsening. During the refinement process, the average

of the local mean free path, λav , and the minimum number of sim-

ulated molecules over all CPU cores is computed for each collision

cell. Then, each collision cell is tested for spatial adaptivity by com-

puting the nearest division integer n d , given by: 

n d = 

log 
(

�x c 
αc λav 

)
log ( 2 ) 

(6)

The collision cell is refined into ( 2 n d ) 
3 new octants provided that

n d is greater than or equal to one and the minimum number of

simulated molecules in the collision cell is greater than N min ×
( 2 n d ) 

3 . In the coarsening process, the average local mean free path

over all CPU cores is computed in each parent cell of eight collision

octants. A parent cell is coarsened if its size is less than αc λav or it

has a child with few numbers of simulated molecules. The geome-

try octree data structure is then updated and simulated molecules

are re-sorted into the new tree structure. 

Temporal adaptation requires computing the desired time step,

�t d , in every collision cell and updating the DSMC simulation flow

time step. Usually, the desired time step is adapted to the mini-

mum time between a specified fraction of the local mean collision

time in each collision cell, �t 1 = α1 τc , and a specified fraction of

the time needed for a molecule to travel a local collision cell size,

�t 2 = α2 

(
�x c / v mp 

)
, as follows: 

�t d = min 

(
α1 

λc 

v mp 
, α2 

�x c 

v mp 

)
(7)
here, according to [30] , α1 , α2 ∈ [1/3, 1/2]. The DSMC sim-

lation flow time step is updated according to a user-defined

riterion. One possible criterion, used by Bird in 2007 [24] , is to

hoose the flow time step to be equal to the smallest value of the

esired time step among all collision cells. In the present study,

ifferent tem poral levels are considered in the computational do-

ain where the number of temporal levels, N l , is computed from

he minimum, �t d min , and maximum, �t d max , desired time steps

s follows: 

�t d max 

�t d min 

= 2 

N l (8)

Each temporal level l , l = 0 . . . N l − 1 , is characterized by 2 l time

teps. Collision cells are assigned to different tem poral levels such

hat �t l = 

�t d max 

2 l 
≤ �t d c , where �t l is the time step in temporal

evel l and �t d c is the desired time step in collision cell c . After

rouping collision cells into different tem poral levels, only levels

opulated by 10% or more collision cells are considered in tempo-

al adaptation. The DSMC simulation flow time step is advanced in

teps equal to the average of the desired time steps of all colli-

ion cells in the first temporal level. The simulation then proceeds

o iterate over the different temporal levels, in descending order

f the time step size, where within each loop, all cells sharing

he same time step are handled. Fig. 4 presents a flowchart of the

mplemented temporal adaptation algorithm. The use of different

emporal levels allows better handling of the spatial dependence

f the time step in the flow domain and decoupling of molecu-

ar motion and collision in the variable time step. The temporal

daptivity scheme results in spatial dependence of the time step

ased on the criteria expressed in Eqs. (7) and (8) . Employing a

iscrete set of temporal levels enables effective handling of the

ovement of molecules between cells of different time steps. At

 certain temporal level l , the molecular and diffusion time steps

re equal to �t l (Move Molecules ( m , �t l ) and Collide Molecules

 l , �t l ) as shown in Fig. 4 ). Multiple collisions are carried out at

he end of each time step �t l ; the number of collisions is equal

o the nearest integer of the ratio of the assigned temporal level

ime step of a cell to its desired time step (round( �t l / �t dc )). Thus,

he temporal adaptivity scheme handle molecular collisions in each

ollision cell while preserving the number of possible collision

airs. A schematic of the temporal adaptation procedure for a two-

emporal levels case is presented in Fig. 5 . For the sake of clarity,
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Fig. 5. Schematic describing the temporal adaptation procedure using two temporal levels. 
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he large cells correspond to the first temporal level with a time

tep �t , and the small ones correspond to the second temporal

evel with a time step �t /2. We follow the loop over the tempo-

al levels as depicted in Fig. 4 . During the loop over temporal level

 = 0 , simulated molecules within cells of temporal levels l = 0 and

 = 1 are allowed to move (sub-figures (a) and (b)). The molecules

re sorted at the end of the move step, and collisions are per-

ormed within cells of temporal level l = 0 (sub-figure (c)). Before

nding the loop over temporal level l = 0 , simulated molecules

hat moved to level l = 1 (simulated molecule 2) are held station-

ry during the loop over the temporal level l = 1 , and simulated

olecules that moved from level l = 1 to l = 0 (simulated molecule

, 6, and 7) are reset to their initial positions (sub-figures (c) and

d)). The loop over temporal level l = 1 considers an inner loop

ver two time steps of �t /2. The same criteria is followed. Sub-

gures ((d) and (e)) and sub-figures ((g) and (h)) correspond re-

pectively to molecular movement over the first and second time
teps within the inner loop for temporal level l = 1 . Sub-figure (f)

nd sub-figure (i) correspond respectively to the sort/collision step

ver the first and second time steps within same loop for l = 1 .

ub-figure (j) corresponds to the end of the temporal adaptation

rocedure. 

At the end of the temporal adaptation algorithm, a global sort

lgorithm re-sorts all molecules into the appropriate collision cells.

he simulation is then resumed using the new mesh and the up-

ated temporal levels. 

. Benchmark test cases 

Several time-dependent numerical simulations of benchmarked 

arefied gas flow in the slip and transition flow regimes are investi-

ated to validate the proposed three-dimensional DSMC code. The

imulations were carried out using Fortran in CentOS Linux 7 on

6 core Intel Xeon(R) CPU E5-2650 v2 running at 2.6 GHz. 
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6.1. Oscillatory shear-driven Couette flow 

In the following, we investigate the oscillatory Couette flow.

This study showcases using the unsteady DSMC method to simu-

late time-periodic rarefied gas flows. A flow of argon gas between

two infinite parallel plates at a distance H apart is simulated such

that the bottom plate is stationary and the top plate oscillates in

a simple harmonic motion with a velocity U = U 0 sin (ωt) in the

lateral direction. The oscillatory Couette flow is characterized by

the Knudsen Kn , Mach Ma , and Stokes β dimensionless parame-

ters. The Knudsen number is the ratio of the mean free path λ to

the characteristic system length H , Kn = λ/H. The Stokes number

β represents the ratio of the diffusion to oscillation characteristic

time scales, 

β = 

√ 

ωH 

2 

ν
= 

(
H 

2 /ν

1 /ω 

)1 / 2 

, (9)

where ν is the kinematic viscosity and ω is the oscillation fre-

quency. The Mach number is the ratio of the flow velocity to the

local speed of sound, Ma = U 0 /a . 

Values of the simulation parameters are selected from pre-

vious work by Park et al. [31] . The gas medium is initially at

rest under standard atmospheric conditions (P 0 = 101325 Pa and

T 0 = 273 K ) . The two plates are maintained at the same temper-

ature T w 

= 273 K . The oscillation amplitude of the upper plate is

kept constant at U 0 = 100 m/s resulting in Ma = 0 . 3248 . The char-

acteristic system length and the oscillation frequency are set to

H = 0 . 625 μ m, and ω = 8 . 096 × 10 8 rad /s, respectively. This re-

sults in Kn = 0 . 1 and β = 5 . We employ the Hard Sphere (HS) colli-

sion model for molecular collisions and the No-Time-Counter (NTC)

scheme for collision pair selection. The horizontal plates are as-

sumed to be fully accommodating and periodic boundary condi-

tions are applied on the side walls at the x − z and y − z planes.

For this unsteady flow, ensemble averaging over 50 0 0 indepen-

dent unsteady realizations is performed. Each unsteady realization

simulates the flow over a time span long enough for the flow

to reach the quasi-stationary behavior. The macroscopic proper-

ties are computed every T /4, where T = 2 π/ω is the period of

oscillation. 

The analytical solution of this problem is obtained by solv-

ing the Navier-Stokes equations subject to the appropriate

slip-flow boundary conditions. Indeed, it is that of a one-

dimensional boundary-value problem of heat conduction with

non-homogeneous boundary conditions of the first kind. This prob-
Fig. 6. Normalized velocity profile for the shear-driven oscillat
em is solved with the integral transform (Fourier transform) tech-

ique [32] where the velocity is expressed as: 

 (z, t) = 

∞ ∑ 

n =1 

e −αλ2 
n t K(λn , z) 

[∫ t 

0 

e αλ2 
n t 

′ 
A (λn , t 

′ ) dt ′ 
]

(10)

here 

 (λn , t 
′ ) = 

K(λn , 1) 

C 1 Kn 
(11)

n are the eigenvalues, C 1 is the modified slip coefficient given

y: 

 1 = 1 . 298 + 0 . 718 tan 

−1 
(
−1 . 175 Kn 0 . 586 

)
(12)

nd K ( λn , z ) is the Kernel corresponding to non-homogeneous

oundary conditions of the first kind. 
A semi-analytical/empirical model that is applicable for quasi-

teady flows ( β ≤ 0.25) in the entire Knudsen regime, and for any
tokes number flow in the slip flow regime ( Kn ≤ 0 . 1) , is presented
n [31] : 

 (z, t) = � 
[ ( 

U 0 

sinh ( 
√ 

j βZ) + 

√ 

j βC 1 Kn cosh ( 
√ 

j βZ) 

(1 + jβ2 C 2 
1 
Kn 2 ) sinh ( 

√ 

j β) + 2 
√ 

j βC 1 Kn cosh ( 
√ 

j β) 

) 

e jωt 

] 

, 

(13)

here Z = z/L and the symbol � denotes the imaginary part of a

omplex expression. The shear stress at the oscillating plate can

e obtained as 

xz | z= L = μ
du (z, t) 

dz 

∣∣∣∣
z= L 

. (14)

DSMC results of the velocity distribution at different times of

n oscillation period within the time-periodic state are shown in

ig. 6 . The results are in good agreement with the published data

n [31] , and with the analytical solutions ( Eqs. (13 ) and (10) ). De-

arture of the analytical solution from that predicted by DSMC is

xpected due to the fact that it employs a first order slip boundary

ondition at solid walls. Comparison of the the shear stress ob-

ained from DSMC simulations and the analytical solution is pre-

ented in Fig. 7 at different times. 
ory Couette flow at Kn = 0 . 1 , Ma = 0 . 3248 , and β = 5 . 0 . 
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Fig. 7. Normalized wall shear stress for the shear-driven oscillatory Couette flow at 

different times. Kn = 0 . 1 , β = 5 . 0 , and τ0 = U 0 /H. 
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.2. Impulsively started Couette flow 

Here, we investigate the transient behavior of argon gas be-

ween two parallel, diffusely reflecting plates, each at temperature

 = 273 K , in response to impulsively started motion of the plates

t a speed of U 0 = 100 m/s. The separation between the two plates

s H = 0 . 2976 μm so that Kn = 0 . 21 . Unsteady sampling of macro-

copic properties and the viscous shear stress is performed at time

 = 16 . 2 ε−1 , where ε denotes the molecular collision frequency.

he viscous shear stress, τ , derived using molecular gas dynamics

2] , is defined as the negative of the stress tensor with the static

ressure subtracted from the normal components. It is written in

ensor notation as: 

≡ τi j = −
(
ρv ′ 

i 
v ′ 

j 
− δi j p 

)
, (15) 

here ρ is the mass density, δij is the Kronecker tensor, and v ′ 
i 

nd v ′ 
j 

are the components of the molecular velocity relative to the

tream velocity. The hydrostatic pressure, defined as the average of
Fig. 8. Velocity (top) and Stress (bottom) fields for the impu
he three normal components of the pressure tensor, is 

p = 

1 

3 

ρ
(

v ′ 2 x + v ′ 2 y + v ′ 2 z 

)
= 

1 

3 

ρv ′ 2 (16) 

To examine the accuracy of our DSMC methodology, compari-

on of the velocity and stress fields, with previous results by Hadji-

onstantinou [33] , and with the exact solution of the Navier-Stokes

quation for second slip flow is shown in Fig. 8 . The comparison

hows a fairly good agreement. 

.3. Thermal Couette flow 

In the following Couette-flow test, Argon gas, initially at rest

nd at temperature T = 273 K , is contained in the region between

wo stationary plates, which are held at temperatures 173 K and

73 K , respectively. The system is then allowed to reach a steady

tate. Fig. 9 represents steady-state temperature profiles across the

hannel at different Knudsen numbers ( Kn = 0 . 1 , 1 . 0) . A very good

greement is obtained with previous results by Olson et al. [34] . 

.4. Hypersonic flow past a flat-nosed cylinder 

Hypersonic flow of argon gas at a temperature of 100 K , a num-

er density of 1 × 10 21 m 

−3 , and a velocity of 10 0 0 m/s over a flat-

osed cylinder with a radius of 0.01 m is considered. The corre-

ponding stream Mach number and Knudsen number based on the

iameter of the cylinder, are respectively 5.37 and 0.0474. The sim-

lated flow domain is 0.04 m in the axial x −direction, and 0.03 m

n the y − and z− directions. The total length of the cylinder is

.02 m and the centre of its flat face is located at x = 0 . 02 m , y = 0 ,

nd z = 0 . The free stream flow boundary conditions are set at left

 yz−plane), backward ( y = 0 . 03 m ), and top boundary ( z = 0 . 03 m )

f the computational domain using the standard method and by

roviding the free stream velocity and free stream temperature.

acuum condition is imposed at the outlet boundary ( x = 0 . 04 m).

eriodic boundary condition is imposed at the bottom ( xy −plane),

nd the in front boundary ( xz−plane) of the computational do-

ain. Diffuse wall boundary condition is applied at the cylinder
lsive start Couette flow for Kn = 0 . 21 at times 16 . 2 ε−1 . 
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Fig. 9. Temperature profile in a thermal Couette flow problem. 

Fig. 10. Flow field refined mesh for a flat-nosed cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Comparison of elapsed time per DSMC realization for non-adaptive 

and adaptive hypersonic flow past a flat-nosed cylinder. 

Non-adaptive Adaptive 

Time step 1.55 μs 1.55 μs 

Sampling time 0.98 ms 0.98 ms 

Transient solution sampling interval 0.196 ms 0.196 ms 

Spatial adaptivity sampling interval 0.244 ms 

Total no. of time steps 633 633 

Total Time per Realization per core 102440.0 s 23719.0 s 

Percentage of Time Spent by Sniffer 0.18% 1.1% 

Initial no. of Cells 147,456 18,432 

Final no. of Cells 147,456 136,893 

r  

c  

t  

f  

u

6

 

b  

M  

a  
wall by incorporating a half-range Maxwellian distribution deter-

mined by the wall temperature and velocity. The temperature at

the cylinder wall is set to 300 K . 

This problem has been studied by Bird [2] as a 2D axisym-

metric problem and as a 3D quarter-section model with symme-

try boundary conditions by Scanlon et al. [9] . To assess the spatial

adaptivity scheme in our DSMC algorithm, this flow is simulated

with and without dynamic grid adaptation. For the non-adaptive

simulation, the grid spacing was chosen to be �x ∼λ0 /2, where

λ0 is the mean free path at the initial conditions. For the adap-

tive simulation, the initial grid size is �x ∼λ0 and the grid spacing

is computed as �x ∼λ/2, where at each adaptation time interval,

λ for each cell is computed using Eq. (2) , where T and n for the

cell are averaged over all the CPU cores. Fig. 10 shows the mesh

upon spatial adaptation where the size of the grid cells near the

flat face of the cylinder is adapted to 1/4 the size of the initial

grid. This illustrates that the high-density region near the flat face

of the cylinder is resolved with a finer mesh distribution. The tran-

sient solution and spatial adaptivity sampling intervals are listed in

Table 2 , in addition to other parameters. The table also shows that

at the end of the simulation, the number of cells in the adaptive

simulation increased from 18,432 to 136,893 which is comparable

to that used in the non-adaptive case. The computational cost of

the adaptive simulation is, however, less by a factor of 4.3. Besides,

the percentage of time spent by the sniffer algorithm, when paral-

lelizing over 15 CPU cores, is less than 2% of the total time per
ealization per core. This reflects the high performance and effi-

iency of the implemented parallelization method. The tempera-

ure and density contours are in good agreement with the results

rom Bird’s DSMC2A code [2] , as seen in Fig. 11 and with results

sing dsmcFoam by Scanlon et al. [9] , as seen in Fig. 12 . 

.5. Hypersonic flow over a cylinder 

Mach-10 hypersonic cylinder flow is a well-known 2D-

enchmark problem [24,35,36] . Fig. 13 shows the schematic of a

ach-10 (2634.1m/s) flow of argon gas at a temperature of 200 K

nd a number density of 4.274 × 10 20 m 

−3 past a circular cylinder
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Fig. 11. Temperature and density contours for hypersonic flow past a flat-nosed cylinder. A comparison of the results in this work with those computed in previous work 

done by Bird [2] . 

Fig. 12. Temperature and density contours for hypersonic flow past a flat-nosed cylinder. A comparison of the results in this work with those computed in previous work 

done by Scanlon et al. [9] . 

Fig. 13. Sketch of the computational domain of argon hypersonic flow over a cylin- 

der at Kn ∞ = 0 . 01 , Ma ∞ = 10 , T ∞ = 200 K , n ∞ = 4 . 274 × 10 20 m 

−3 . 
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Fig. 14. Contours of temperature of Mach-10 hypersonic flow past a circular cylin- 

der; colored lines are DSMC data; the grey spheres are VMR data [35] . 
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ith a fully diffusive wall at a temperature of 500 K . The corre-

ponding free-stream Knudsen number is 0.01, based on the free-

tream mean free path (λ∞ 

= 0 . 003 m ) and the diameter of the

ylinder ( D = 0.3048 m). 

As part of the validation process, the spatio-temporal adaptivity

cheme is applied to this problem. This is motivated by the rapid

ariations in the local molecular mean free path and the mean col-

ision time. The computational grid is generated initially with a cell

ize of approximately (1 − 2) λ, based on free-stream conditions,

nd using 100 particles per cell. As the flow evolves, the param-

ters λ and τ c are periodically computed for each cell. All DSMC

equirements are checked, i.e., the cell size is smaller than the lo-

al mean free path, the time step is smaller than the local mean

ollision time, and the number of simulated molecules is around

0 − 30 molecules. If these conditions are not satisfied in a given

ell, the spatio-temporal adaptation algorithm is called, and the
arameters �x c and �t are modified. In doing so, the cell size is

dapted to 0.25 λ and the desired time step is adapted to 0.333 τ c .

he total number of cells in the simulation domain changed from

,6 80 to 10,4 80, the time step �t changed from 3.176 μs to 1.42 μs

nd 0.71 μs in grid cells belonging to the first and second tempo-

al levels, respectively. Fig. 14 compares contours of temperatures

btained using our DSMC algorithm with those reported previously

sing the virtual mesh refinement (VMR) module [35] . Figs. 15 and

6 show the density and temperature distribution along a vertical

ine just before the cylinder ( x = 0.205 m) and in the wake region

 x = 0.6 m), respectively. Our results are in good agreement with

he benchmarked results. 

.6. Hypersonic flow over a flat plate 

In this section, we benchmark our DSMC solver against the DAC

nd MONACO solvers for the hypersonic flow over a flat plate in-

estigated by Padilla et al. [37] . The flow domain, shown in Fig. 17 ,

s a rectangular region with dimensions 180, 1, and 205 mm in the
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Fig. 15. Density and temperature distribution along a vertical line before the cylinder (x = 0.205 m). (a) Density (b) Temperature. 

Fig. 16. Density and temperature distribution along a vertical line in the wake region (x = 0.6 m). (a) Density (b) Temperature. 

Fig. 17. Schematic of the flow field domain for hypersonic flow over a flat plate. 
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x, y , and z directions, respectively. The flat plate length and thick-

ness are 100 mm and 5 mm respectively. Nitrogen gas (VHS gas)

enters a the flow domain with a velocity of 1503 m/s and a tem-

perature of 13 . 32 K. Inflow boundary conditions are applied to the

left, bottom, and top faces of the flow domain. Outflow boundary

condition is applied at the right face. Periodic boundary conditions

are enforced at the x − z planes on either sides of the domain. The

boundary condition at the flat plate, of fixed temperature ( 290 K),

is that of diffuse reflection and full thermal accommodation. Other

parameters can be found in [37] . 
We compare results of our DSMC code with those reported in

37] for the case when the molecular rotational energy exchange is

ot considered. The pressure and shear stress distributions along

he upper surface of the flat plate are compared in Fig. 18 , and

ontours of bulk flow velocity magnitude are compared in Fig. 19 .

easonable agreement in the results between the two codes is ob-

erved. Comparison of our DSMC algorithm with DAC and MONACO

n terms of the memory spread and computational cost of the

olecular motion, collisions, and other procedures are presented

n Table 3 . Our algorithm consumes ∼ 2 μs per realization per sim-

lated molecule, whereas DAC and MONACO consume ∼ 1.4 μs. The

elative time cost of the main procedures show that our collision

rocedure is more expensive than that of DAC and MONACO. This

ay be attributed to the fact that we employ more simulators

er cell resulting in a larger number of collision pairs. In terms

f memory, our code consumes 360 bytes of memory per simula-

or, which is more than twice that of MONACO and five times that

f DAC. The higher memory consumption of our algorithm is be-

ause it is designed for transient flows with complex geometries.

or these problems, employing an oct-tree and the associated data

tructures and the toolset that comes along are expected to con-

ume more CPU time and memory. For example, checking whether

and where) a ray intersects a rectangle (with sides aligned with

he coordinates) is much cheaper and faster than checking whether

and where) a ray intersects a complex surface represented by

 triangular mesh. From the memory perspective, the amount of

emory it takes to store the geometry of a rectangle is much less

han that of a triangulated surface mesh where the length scale

f the triangles is of the order of the collision cell size. In addi-

ion, the spatio-temporal adaptivity also requires additional mem-

ry cost (such as re-sorting the molecules in the new cells), but
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Fig. 18. Comparison of the surface pressure and the shear stress in the x -direction along the upper surface of the flat plate. 

Fig. 19. Schematic of the flow field domain for hypersonic flow over a flat plate. 

Table 3 

Comparison of DSMC metrics for hypersonic flow over a flat plate. 

DAC MONACO Present DSMC 

Sampling technique Steady 

sampling 

Steady 

sampling 

Unsteady 

sampling 

Number of simulators 3,169,267 3,173,070 6,342,950 

Simulation time per 

realization per simulator 

1.378μs 1.376μs 1.96μs 

Memory per realization per 

simulator 

70 bytes 163 bytes 370 bytes per 

core 

Relative cost Move: 48%, 

Collide: 6%, 

other: 46% 

Move: 36%, 

Collide: 12%, 

other: 52% 

Move: 43%, 

Collide: 15%, 

other: 42% 
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ith the potential to yield significant savings, as demonstrated in

revious examples. Whether the spatio-temporal adaptivity algo-

ithm yields significant savings or not depends on the problem. For

ome problems, such as steady flows with moderate spatial gradi-

nts, the spatio-temporal adaptivity is not expected to offer any

avings. 

. Conclusion and future work 

In this paper, a new parallel spatio-temporally adaptive multi-

cale DSMC algorithm is proposed and implemented to simu-

ate unsteady rarefied flows in complex geometries. A hierarchi-

al octree-based Cartesian grid is generated and a cut-cell method,

here the triangulated solid boundary surface intersects the grid

ells, is adopted. The selected geometry model is characterized

y its low memory storage requirements compared to the use of
on-Cartesian meshes, its ability to implement an efficient ray-

racing particle movement scheme, and its flexibility to incro-

orate a fully dynamic three-dimensional spatial and temporal

daptive scheme that maintains DSMC constraints consistent with

he local variations of flow field properties. The proposed algo-

ithm employs a novel spatio-temporal adaptive scheme based

n the macroscopic averages of local flow properties. It also in-

orporates a new parallelization method based on running paral-

el unsteady DSMC simulations simultaneously and independently

ver multiple CPU cores. Results for two- and three-dimensional

enchmark test cases demonstrate the accuracy and robustness of

he proposed DSMC algorithm. In future work, we expect to ex-

end the algorithm to simulate moving boundary flows and then

howcase the efficiency and accuracy of the algorithm in pre-

icting unsteady flows encountered in transient three-dimensional

uid-structure interaction problems and several micro- and nano-

lectromechanical systems (MEMS/NEMS) applications. 
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