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A B S T R A C T

Lagrangian tracking of passive tracers in a stochastic velocity field within a sequential ensemble data assim-
ilation framework is challenging due to the exponential growth in the number of particles. This growth arises
from describing the behavior of velocity over time as a set of possible combinations of the different realizations,
before and after each assimilation cycle. This paper addresses the problem of efficiently advecting particles in
stochastic flow fields, whose statistics are prescribed by an underlying ensemble, in a parallel computational
framework (openMP). To this end, an efficient algorithm for forward and backward tracking of passive particles
in stochastic flow-fields is presented. The algorithm, which employs higher order particle advection schemes,
presents a mechanism for controlling the growth in the number of particles. The mechanism uses an adaptive
binning procedure, while conserving the zeroth, first and second moments of probability (total probability, mean
position, and variance). The adaptive binning process offers a tradeoff between speed and accuracy by limiting
the number of particles to a desired maximum. To validate our method, we conducted various forward and
backward particles tracking experiments within a realistic high-resolution ensemble assimilation setting of the
Red Sea, focusing on the effect of the maximum number of particles, the time step, the variance of the ensemble,
the travel time, the source location, and history of transport.

1. Introduction

Lagrangian particle tracking (L.P.T.) is a powerful tool for modeling
transport phenomena in the ocean. Integrated with other tools, L.P.T.
lies at the core of models that assess the quantity of pollutants affecting
contaminated waters after catastrophic events, such as oil spills, and
toxic beach littering (Nakashima et al., 2012; Cole et al., 2011). L.P.T. is
also often used to locate the sources of polluting events such as tar ball
deposition (Suneel et al., 2016) or to determine the site of an airplane
crash. The application of the method extends to drifter design experi-
ments, where one is interested in optimizing the location of drifter
launch sites (Hernandez et al., 1995; Poje et al., 2002), and also to
study ocean physics (e.g. water ventilation or diagnosing ocean mixing)
and pathways of marine organisms (e.g. nutrients transport). A review
of Lagrangian methods for large-scale ocean applications can be found
in van Sebille et al. (2018).

Depending on the application, there are two modes of operation of
L.P.T.: forward tracking investigates particles transport from known

sources (Brickman and Smith, 2002), while backward tracking is used
to identify the source location, given observations at later times
(Batchelder, 2006; Isobe et al., 2009). In both modes, a major challenge
in this area is to design a robust algorithm for L.P.T. in the presence of
uncertainties. Uncertainties can be categorized into two types: Eulerian
and Lagrangian. Lagrangian uncertainties are those arising from pro-
cesses affecting the particles themselves. Depending on what the par-
ticles are used to represent, such processes can range from diffusion
and oil weathering (i.e., spreading, evaporation, emulsification, dis-
persion, etc) (Spaulding, 1988; Reed et al., 1999; Spaulding, 2017)
to larval reactions (i.e., behavior, mortality and reproduction)
(Batchelder, 2006). Eulerian uncertainties, introduced by the velocity
field, affect the advection of particles. These uncertainties are due to
uncertain input fields in ocean circulation models, such as initial con-
ditions, atmospheric forcing, and poorly known modeling errors (e.g.
National Research Council, 2012). In this work, an efficient algorithm
for both forward and backward tracking of passive particles in the
presence of Eulerian uncertainties is presented.
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The most common approach to deal with Eulerian uncertainties is to
advect the particles with a stochastic velocity field (Beaudoin et al.,
2007; Guo et al., 2016). In particular, when particle tracking is per-
formed in an ensemble data assimilation context, the flow-field is
characterized by a set of velocity vectors (Hoteit et al., 2013). At each
assimilation cycle, a set of (eventually random) realizations of this field
are generated, and the new realizations do not necessarily have well
defined correspondences to the realizations before or after the assim-
ilation. As a result, the behavior of the velocity over time can only be
described as a set of possible combinations of the different realizations,
before and after each assimilation cycle (Höllt et al., 2015). Even with a
deterministic initial condition, a particle can then have as many tra-
jectories as the combination of all the previous ensemble realizations of
all assimilation intervals. The number of particles will then grow ex-
ponentially with the number of assimilation intervals, making it un-
practical to track individual particles (Höllt et al., 2015). This motivates
the need to wisely manage this type of growing data in a manner that
makes it feasible to apply both forward and backward Lagrangian
particle tracking methods. This paper addresses the problem of effi-
ciently advecting particles with a random velocity field, whose statistics
are prescribed by a set of realizations, in a parallel computational fra-
mework.

When the statistics of the velocity field are known, a Monte Carlo
approach is often used and the uncertainty in the velocity field is
generated based on a probability distribution. Previous work on particle
tracking in such flow fields focused on developing algorithms to effi-
ciently advect particles using parallel particle tracking (e.g. Beaudoin
et al., 2007; Guo et al., 2013; Guo et al., 2016). Some of these algo-
rithms (Beaudoin et al., 2007; Guo et al., 2016) employed stochastic
integration schemes to numerically solve the advection equation. Most
relevant to this article is the work in Guo et al. (2016) on using sto-
chastic flow maps (SFM) to model uncertain transport. In
Guo et al. (2016), advected particles were grouped in each grid cell, and
at the next time step, new particles were launched from the center of
the cell, following a Monte Carlo approach, which traces the particle
stochastically in the uncertain unsteady flow field. Parallelization of the
process was accomplished by decoupling the time dependencies in
SFMs, thereby reducing the computational cost of the many runs re-
quired to efficiently trace the large number of seeded particles.

Our work is similar to Guo et al. (2016) in the following aspects:
cost reduction, adaptivity, and binning. It differs as follows: (i) our
method decouples the statistics from the tracking process. In this fra-
mework, the stochastic velocity field is first expressed as a sequence of
independently sampled ensemble fields, which are then used for par-
ticle tracking, (ii) this makes our method suitable for particle tracking
in an assimilation context, crucial for accurate simulation of the ocean
flow-field (Hoteit et al., 2002), and (iii) cost reduction in our work is

attained by both invoking a parallel algorithm and controlling the
growth in the number of particles. The latter is accomplished by bin-
ning and by using a spatially adaptive algorithm that controls the
evolution of the uncertainties introduced by binning.

Our work builds on the approach proposed by Höllt et al. (2015) for
particle tracking using ensemble flow fields. Höllt et al. (2015) in-
troduced a way to keep the combination of path-lines manageable by
binning the final positions of the particles. Particles with path-lines
leading to the same bin are merged into one particle to be traced in the
next assimilation interval. A probability map is then obtained at each
assimilation step with the number of particles in a bin defining the
probability assigned to it. The approach was combined with first order
forward tracking and tested in the Red Sea using realistic ensembles
simulated by an assimilative ocean general circulation model (OGCM).
The test results illustrated the relevance of the method to efficiently
estimate the probability maps of interest. One limitation of the binning
suggested in Höllt et al. (2015) is that it collapses all particles onto the
center of the bin they belong to, while conserving the total probability
(zeroth moment). This approach not only increases the uncertainty, but
it also does so in an unquantifiable and uncontrollable manner. The
objective of this work is therefore to develop high order particle ad-
vection schemes in stochastic flow fields with statistics prescribed by an
underlying ensemble, and to propose an elements growth control me-
chanism that uses an adaptive binning procedure, while conserving the
zeroth, first and second moments of probability (total probability, mean
position, and variance). The proposed adaptive binning procedure of-
fers a tradeoff between speed and accuracy by limiting the number of
particles to a desired maximum. The novelty of the method, manifested
by a higher order advection scheme along with the adaptive and con-
servative binning procedure, will lead to improvements in cost, speed
and accuracy, all essential to online tracking. The forward and back-
ward algorithms presented in this work are implemented in a parallel
computational framework using openMP.

The paper is structured as follows. Section 2 describes the ensemble
of Red Sea flow-fields used in the numerical experiments. Section 3
presents the proposed methods for forward and backward tracking and
the construction of the probability maps, including the integrations and
binning schemes. The design and results of the numerical experiments
are presented in Section 4. Finally, concluding remarks are offered in
Section 5.

2. Ensemble dataset

The method is illustrated using an assimilated ensemble dataset of
velocity fields of the Red Sea. The full description of the assimilation
system from which the dataset was generated can be found in
Toye et al. (2017). The system operates sequentially as cycles of

Nomenclature

0 subscript: refers to initial conditions at =t 0
1 subscript: refers to post merging
α fraction of the assimilation interval
Δt time step, =t T mΔ /a
Δx x dimension of the grid cell or bin
Δy y dimension of the grid cell or bin
Δz z dimension of the grid cell or bin
σ standard deviation
→u velocity vector
→x position vector
a subscript: refers to assimilation
b subscript: refers to bins
i realization index at beginning of advection over a time

period = Ta

j realization index at end of advection over a time period =
Ta

k index of assimilation interval, =k n1.
l particle index
m number of time steps per assimilation interval
N number of particles
n Number of assimilation intervals
o order of x moment
p probability
q order of z moment
R number of realizations
r order of y moment
S probability strength
t time
Ta assimilation interval
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forecast-analysis steps, using the MIT ocean general circulation model
(MITgcm) for forecasting the Red Sea circulation and an ensemble
Kalman filter (EnKF) based on the Data Assimilation Research Testbed
(DART) software for updating the forecast every time new observations
become available (Hoteit et al., 2013). The system domain extends from
30°E to 50°E and from 10°N to 30°N, covering the Red Sea, the Gulf of
Suez, the Gulf of Aqaba, and the Gulf of Aden. The system was con-
figured on a spherical grid with a resolution of 0.04°× 0.04° resulting
in a 500×500 grid points and 50 z-vertical layers ranging from 4 m at
the surface to 300 m near the bottom. The model bathymetry was ex-
tracted from the gridded General Bathymetric Chart of the Ocean
(GEBCO), and the atmospheric forcing fields were obtained from the 6-
hourly European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis. The open boundaries in the Gulf of Aden were
prescribed from the Estimation of the Circulation and Climate of the
Ocean (ECCO) consortium, and the initial ensemble selected from the
outputs of a long model run without assimilation. The system assimi-
lated combined along-track Sea Surface Height (SSH) observations from
nine altimeter missions from the Radar Altimeter Database System
(RADS) and mapped Sea Surface Temperature (SST) data rom the 4 km
Advanced Very High Resolution Radiometer (AVHRR) Pathfinder ver-
sion 5 time series over =T 3a days assimilation intervals. This assim-
ilation system was integrated to generate an ensemble of 3-daily flow-
fields for the month of January 2006, resulting in a dataset of =n 10
sampled time steps, each consisting of =N 50e realizations. In an EnKF,
the realizations are independently sampled after every analysis step and
do not therefore exhibit well defined correspondences to the realiza-
tions at the previous analysis steps (Hoteit et al., 2015; Höllt et al.,
2015). As a result, the particles behavior over time can only be de-
scribed as a set of possible combinations arising from advection from
any realization of the ensemble at assimilation time ta to any realization
of the ensemble at assimilation time +t T ,a a which characterizes the
time interval separating these independently sampled ensembles.

3. Methods

3.1. Stochastic velocity map

Given the source location →xs and emission time t0, the problem is to
identify probable locations of a passive particle carried by a stochastic
flow field, represented in terms of an ensemble of velocity fields,
available at every assimilation step ta,

�
→ → = ∈ = …u x t t kT k i N( , ), , , 1, ,i g a a a e (1)

where Ta is the assimilation frequency, →xg denotes the grid coordinates,
and Ne is the ensemble size. In this section, we build the velocity map
that enables advection of passive tracers using high-order integration
schemes, customized for such ensemble representation.

Implementation of high-order time integration schemes for particle
advection requires the computation of the velocity at intermediate
times, = +t t αT ,a a where 0≤ α≤ 1. This is accomplished by using
linear interpolation between the velocities at =t ta and = +t t Ta a.
Since the ensemble velocity field at = +t t Ta a is sampled in-
dependently from that at Ta, there are, for each realization i at =t t ,a Ne

possibilities for the velocity at the intermediate time +t αTa a. These
possibilities corresponds to Ne interpolations of the velocity fields, at
the particle position →x , between the ith realization at ta and all the
realizations = …j N1, , e at +t Ta a. The interpolated velocities, denoted
→ → +u x t αT( , ),i j a a, are

→ → + = − → → + → → + = …u x t αT α u x t α u x t T j N( , ) (1 ) ( , ) ( , ) for 1, , .ij a a i a j a a e

(2)

Each realization is denoted by a single subscript, i.e. → →u x t( , )i a denotes
realization i of the velocity at position →x and time ta.

Thus, considering all the combinations arising from the ensemble

velocity fields at ta and +t T ,a a a particle initially located at→x ta at =t ta

will arrive at Ne
2 equally probable destinations, → +

x ,ij
t tΔa at +t tΔ ,a with

0< Δt< Ta, and Ne
2 being the product of Ne equally probable velocities

at ta and Ne equally probable velocities at +t T ,a a as depicted in Fig. 1.

3.2. Higher-order time integration schemes

Here, we use the velocity map (2) to present high-order time in-
tegration schemes for advecting passive tracers in the stochastic field
corresponding to the given ensemble representation (1). Since the en-
semble is available at every assimilation step, we choose the integration
time step, Δt, to be an integer fraction of Ta, i.e. =t T mΔ / ,a where m is a
positive integer. We then present the implementation of such schemes
for advecting a particle in the interpolated field (1) from =t ta to

= + = +t t T t m tΔa a a .
Starting from position →x ta at =t t ,a we consider the Ne

2 equally
probable paths expressed as:

∫→ = → + → → ≤ ≤
+

+

x x u x s ds i j N( , ) , 1 , .ij
t t

i
t

t

t t

ij
s

e
Δ

Δ
a a

a

a

(3)

To showcase the simulation of (3) with higher-order time integration
methods, we outline the implementation of the second-order Runge-
Kutta scheme (RK2), with =t T mΔ /a . In this case, we have:

→ = → + → →+
x x u x t t( , ) Δ

2
,ij

t t

ij
t

ij ij
tΔ

2
(4)

→ = → + → ⎛
⎝
→ + ⎞

⎠
+ +

x x u x t t t, Δ
2

·Δ ,ij
t t

ij
t

ij ij
t tΔ Δ /2

(5)

for 1≤ i, j≤Ne. Note that when =t t ,a
→ = →x xij

t
i

ta and
→ → = → →u x t u x t( , ) ( , )ij ij

t
i i

t
a

a .
Generalization of the method to higher-order time integration

methods, such as the fourth-order Runge–Kutta scheme (RK4), is
straightforward. Aside from the additional cost of carrying out four sub-
steps instead of two, and the associated cost of interpolating the velo-
city according to Eq. (2), the growth in the number of particles with
time using the RK4 scheme is the same as that using the RK2 scheme.
Specifically, if we start with one particle at a given location at =t 0, the
number of particles grows as N ,e

2 N ,e
3 ... , +Ne

n 1 at times Ta, 2Ta, ... , nTa.

3.3. Binning

To control the exponential growth in the number of elements, a
binning procedure is implemented. The procedure is in spirit similar to
that presented in Höllt et al. (2015), where binning was employed to
create probability maps that provide the probability of having a particle
at a given location and time. In contrast to the procedure in
Höllt et al. (2015), we propose a binning methodology that is spatially
adaptive and that conserves the zeroth, first, and second moments of

Fig. 1. A particle at time ta is advected along Ne
2 trajectories.
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probability. Specifically, the binning merges all particles that fall in the
same bin and are associated with a particular realization, into a single
particle that belongs to the same realization. We note at this point that
preserving the realization identity of the particles, while binning, is
necessary because the particle velocity associated with that particular
realization is needed for the first step of the RK time integration scheme
from kTa to +kT tΔa . Merging is performed in such a way that enables
us to conserve the total probability, the mean position, and the var-
iance.

To this end, we represent the probability field, →p x t( , ), as the
convolution

∑→ = → − →

=

→p x t S ϕ x x( , ) ( ),
l

N

l σ l
1

l (6)

where → − →→ϕ x x( )σ ll is a basis function that describes the probability
distribution due to element l, of strength (or weight) Sl, and located at
→xl . The basis function is radial (i.e. depends on = → − →r x xl ) and in-
tegrates to unity, i.e. ∫ =∞ ϕ r πr dr( )4 10

2 . In addition, the function and
its derivatives vanish at infinity. In this work, we choose ϕ to be the
Gaussian distribution

→ − → =→ − → −→
ϕ x x

π σ
( * *) 1 e ,

͠σ l
l

x x
3/2 3

* *
l

l
2

(7)

where =σ σ σ σ( ) ,͠ l x y z l
3 the superscript * denotes normalized quantities, x

and xl are normalized by (σx)l, y and yl are normalized by (σy)l, and z
and zl are normalized by (σz)l. Note that in addition to satisfying all the
requirements above, our choice of ϕ allows for representation of the
probability distribution associated with element l using three separate
variances, i.e. σ σ( ) , ( )x l y l

2 2 and σ( ) ,z l
2 characterizing the uncertainty in the

position along the Cartesian coordinates x, y, z, respectively. Note also
that in the limit (σx)l, (σy)l and (σz)l→ 0, ϕ(r)→ δ(r)/4πr2, where δ(r) is
the Dirac delta function.

Merging all elements, l, falling in the same bin and associated with a
specific realization, i, into a single element, 1, while conserving the
total probability, mean position, and variance is accomplished by sa-
tisfying the moment conditions

∫∫∫

∫∫∫

∑ ′ ′ ′ →′ − → ′ ′ ′=

′ ′ ′ →′ − → ′ ′ ′
∈ ∈ ∞

→

∞

→

S x y z ϕ x x dx dy dz

S x y z ϕ x x dx dy dz

( * *)

( * * ) ,
l l i

l
o r q

σ l

i
o r q

σ i

bin, realization

1, 1,

l

l
(8)

where �∈o r q, , and the subscript 1 refers to the single particle after
merging. For our choice of the basis function in (7), the moment con-
ditions (8) yield the following system of equations,

∑ =S S ,l 1 (9)

∑ =S x S x ,l l 1 1 (10)

∑ =S y S y ,l l 1 1 (11)

∑ =S z S z ,l l 1 1 (12)

∑ ⎛
⎝

+ ⎞
⎠

= ⎛
⎝

+ ⎞
⎠

S x σ S x σ1
2

( ) 1
2

( ) ,l l x l x
2 2

1 1
2

1
2

(13)

∑ ⎛
⎝

+ ⎞
⎠

= ⎛
⎝

+ ⎞
⎠

S y σ S y σ1
2

( ) 1
2

( ) ,l l y l y
2 2

1 1
2

1
2

(14)

∑ ⎛
⎝

+ ⎞
⎠

= ⎛
⎝

+ ⎞
⎠

S z σ S z σ1
2

( ) 1
2

( ) ,l l z l z
2 2

1 1
2

1
2

(15)

∑ =S x y S x y ,l l l 1 1 1 (16)

∑ =S y z S y z ,l l l 1 1 1 (17)

∑ =S z x S z x ,l l l 1 1 1 (18)

for + + ≤o r q 2. Note that the realization index i has been dropped to
simplify the presentation. The strength of element 1 is obtained from
Eq. (9). Its position→x1 is then determined from Eqs. (10)-(12). Eqs. (13)-
(15) are then solved for the variances σ( ) ,x 1

2 σ( )y 1
2 and σ( ) ,z 1

2 respectively.
It can be then shown that once the zeroth and the first moments
(Eqs. (9)-(12)) are satisfied, the cross moments Eqs. (16)-(18) are au-
tomatically satisfied by virtue of the radial symmetry of ϕ. At the end of
the merging procedure, the number of particles per bin cannot exceed
the number of realizations, Ne.

Upon inspecting Eqs. (13)-(15), one can observe that although using
larger bins produces a smaller number of particles, this will lead to an
increase in the variance. For example, if all the particles before binning
have zero variance, they are merged into a single particle with variance

= ∑ −σ( ) ,x
S x x

S1
2 2 ( )l l 1 2

1
= ∑ −σ( ) ,y

S y y
S1

2 2 ( )l l 1
2

1
and = ∑ −σ( )z

S z z
S1

2 2 ( )l l 1 2

1
. In this

case, the sum of the x, y and z variances is the post-merging variance

Fig. 2. An example of the adaptively sized bins.
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= ∑ → −→
σ S x x

S1
2 2 l l 1

2

1
.

3.4. Adaptive binning and refinement

Spatially adaptive binning offers the possibility of controlling the
variance by proper selection of the bin size. An example is shown in
Fig. 2 (See also Fig. 11 for top views.). In the adaptive binning algo-
rithm proposed here, the variance is chosen to be inversely proportional
to the total probability strength in the bin, Sbin≡∑i∈ binSi. Thus we seek
to enforce =S σ constant,bin bin

2 where σbin
2 is a measure of the average

variance over all realizations after merging. This relationship between
the bin size and the variance ensures that regions of high probability are
also regions of low variance, and vice versa.

Starting with a rectangular box that contains all the particles, bin-
ning is accomplished by a recursive division of the bins using an oct-
tree. Strict enforcement of the condition =S σ constantbin bin

2 requires
solving the moments Eq. (8) every time a bin is divided (for all nodes at
all levels of the oct-tree), which makes the procedure computationally
expensive. To mitigate these costs, an alternative procedure is im-
plemented in which a bin is divided into eight bins if its total prob-
ability is greater than a characteristic value, S⋆. Due to the dependence
of the post-merging variance on the distance between the weighted
mean position and the positions of the elements to be merged
(Eqs. (13)-(15)), dividing a bin into eight sub-bins limits the increase in
variance by roughly a factor of four. Thus, the desired dependence of
the variance on the probability is established.

3.5. Capping the number of particles

An attractive feature of both the fixed-size and adaptive binning
procedures is that they allow capping the number of particles to a de-
sired maximum, Nmax. This feature not only guarantees that the code
does not run out of memory, but also offers tradeoff between accuracy
and speed. By choosing a smaller Nmax, shorter simulation times can be
achieved due to the smaller number of bins. The bin sizes are however
larger in this case, which results in higher variances. Enforcing the
condition N<Nmax is accomplished by defining a characteristic bin
probability S⋆, selected so that the number of particles after binning
satisfies N<Nmax. This is done by iteratively running a series of virtual

binning processes, whereby at the end of each process, S⋆ is adjusted
depending on the number of particles. In particular, if after iteration κ,
Nκ>Nmax, we set for iteration +κ 1, =+

★ ★S β S ,κ
N

N κ1 κ
max where 0< β≤ 1.

Note that virtual binning is a fast process because, except for the last
iteration, it does not entail solving the moments equations.

3.6. Boundary conditions

In this section, we discuss the boundary conditions at the free-sur-
face and at the beach. Motion of the free-surface may cause the particle
to be advected above the top layer of the computational grid. In this
case, the particle’s velocity is obtained by extrapolating the velocities
from the uppermost two layers.

When the flow field, over a given time-step (Δt), advects a particle
into the beach, the time step is recursively halved until the particle
remains in water at the end of the time step or a minimum threshold
time step (Δtmin) is reached. Under the latter condition, a simple
beaching model is implemented. If the flow over Δtmin pushes a particle
inland, the point of intersection of the particle’s trajectory with the
coast is determined. The particle is then advected with a fraction of the
time-step, sufficient for the particle to reach the coast. After that, the
particle is advected for the remainder of the time step using the tan-
gential component of the velocity at the shore (enforcing no-through
flow boundary condition). An alternative boundary condition, that is
also implemented in our model and used in the experiments presented
in the results section, is to trap the particle at the coast.

Other strategies for handling these two boundary conditions are
possible. For instance reflection at the free-surface can be treated as in
North et al. (2011). The particle-beach interaction involves numerous
uncertainties and variables that include the properties of the coast and
particles (Neves et al., 2015; Samaras et al., 2014). The beaching model
can be extended to combine the two aforementioned models by split-
ting the particle that reaches the coast into two particles. One particle is
kept at the shore while the other is advected using the tangential
component of the velocity. The probabilities of these two particles are
based on the tendency of a particle to stay onshore, which is a function
of the properties of the particles and the type of the coast.

3.7. The forward tracking algorithm

A flowchart of the forward tracking algorithm is presented in Fig. 3.
In addition to reducing the number of particles by binning, further
reduction in the number of particles is achieved by removing all the
particles with strengths below a cutoff value.

3.8. Backward tracking method

In this section, we present a backward Lagrangian tracking algo-
rithm for identification of probable sources at time −t T ,eo0 based on
observations at time t0. As in the forward tracking algorithm, we as-
sume the particles to be passive tracers that are transported by the
velocity field. We also assume that the time elapsed, Teo, from the in-
stant, t0, is known. The problem then reduces to solving for a particle’s
position at a previous time, → −x t t( Δ ), the following Lagrangian ad-
vection equation

→
= → →dx

dt
u x t( , ) . (19)

Integrating from −t tΔ to t yields

∫→ − = → + − → → ′ ′
−

x t t x t u x t dt( Δ ) ( ) ( , ) .
t t

t

Δ (20)

The same procedure adopted for the forward tracking problem is
adopted here, with the only difference being the use of the reverse
velocity − → →u x t( , ). This backward procedure enables us to build

Fig. 3. Flowchart of the forward tracking algorithm.
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probability maps for the originating source, starting from observations
at a given later time.

It should be noted, however, that although the velocity field for the
backward tracking problem is the reverse of that of the forward pro-
blem, the variance continuously increases in both cases. This introduces
intrinsic irreversibility in the problem that cannot be removed, but can
at best be managed using the proposed adaptive binning algorithm.

4. Results and discussion

Forward and backward experiments were conducted to validate our
methods. These experiments are summarized in Table 1. Except for the
experiment of Section 4.5, all the forward experiments are performed
according to the following scenario: a particle carrying an initial
strength of =S 100

9 is released from a fixed point source located at 37°
latitude, 24° longitude and 2.5 m below sea surface in the Red Sea. This
source is shown as a black square on each map. Next, particles are
advected for a period specified by Travel time using a fourth order
Runge–Kutta scheme (RK4) and a fixed time step Δt. In all the
experiments, we chose =tΔ 60min s. To investigate various
sensitivity experiments and scenarios, the ensemble of flow fields
( = … = …u j i N, 1, 2, and 1, ,i

j
e

( ) ) used for advection are obtained from
the original ensemble ( = … = …u j i N, 1, 2, and 1, ,o

i
j

e
( ) ) described in

Section 2 by generating new members having the same average but a
fraction, f2, of the variance of the original dataset, as

→ = → + − → = …u x t f u x t f u x t i N( , ) · ( , ) (1 ) ( , ), 1, , ,i
j

g a
o

i
j

g a
o j

g a e
( ) 2 ( ) 2 ( )

(21)

where uo j( ) is the average of the underlying ensemble. At the end of each
forward simulation, a probability map is obtained according to Eq. (6).
Note that the initial strength is selected to be sufficiently large to avoid
reaching machine precision due to the exponential growth in the
number of particles. In all the probability distribution figures, the ac-
tual probability is the reported value in the color bar divided by the
initial strength. These values may be compared with a reference value
of × −4.3 10 ,5 which is the value of the (actual) probability if the initial
strength were distributed uniformly over the entire volume of the Red
Sea. The backward tracking experiments are conducted as follows: once
a forward simulation is executed over the desired Travel time and the
probability map is computed, the location of the highest probability is
chosen to be the location of the source for the backward run. All other
parameters remain the same as those of the forward experiment. As
outlined in Table 1, we assess the sensitivity of the proposed tracking
system and its outputs to the following parameters: (i) the maximum
number of particles N ,max (ii) the time step Δt, (iii) the variance of the
ensemble velocity field, (iv) the travel time, and (v) the spatial dis-
tribution of the ensemble velocity variance. We conclude the results
section by showcasing adaptive binning along with the associated
growth in the uncertainty in particles locations and commenting on the
computational cost of the algorithm.

The method offers a tradeoff between accuracy and cost through the
choice of the maximum number of elements (Nmax) and the time step
(Δt). To reduce the computational cost and the simulation time, we
chose the minimum possible Nmax and the maximum possible Δt
without sacrificing accuracy, as discussed below.

4.1. Sensitivity to the maximum number of particles

The impact of the maximum number of particles on the probability
distribution is first investigated in forward/backward experiments as
described in the first row of Table 1. The results for the forward ex-
periments are displayed in the top row of Fig. 4 for =N 0.5, 1, 50max
and 300 million, whereas those of the backward runs are displayed in
the bottom row of the same figure. As can be seen, as Nmax increases
from 1 million to 300 million, the probability maps obtained at the end

of the forward and forward/backward tracking simulations do not
change appreciably. For smaller Nmax, loss in accuracy and resolution is
expected. This can be observed for the case with =N 0.5max million
particles, where the probability distribution is different in terms of
shape and coverage.

Note that in the absence of binning, a particle is split into 5010

particles after 27 days of advection; as discussed in Section 3.2. As Nmax

continues to increase, the probability map is expected to converge to-
ward the map for which no binning is performed. This is because a
larger Nmax results in smaller bins, as discussed in the methods section.

For the backward tracking experiments (bottom row), one can notice
two high probability zones; one along the coast and the other in the vi-
cinity of the source. Due to the high variability characterizing the en-
semble velocity field and the large coast length to surface area ratio, we
expect to have a high probability coastal zone in most of the cases, namely
because the beaching model traps the particles once they reach the coast.

The distance, δ, between the location of highest probability in this
region (green square in Fig. 4) and the source (black square) is a
measure of the accuracy of the method. Sources of inaccuracy include
the resolution of the computational grid of the velocity field, the large
uncertainty in the ensemble velocity fields (the standard deviation is
almost of the same order as the mean, as can be seen in Fig. 10), the
simple beaching method adopted, and the smoothing introduced by the
binning process which, for the forward/backward problem, takes place
over 2×27 days. Despite all of these challenges in this extreme sce-
nario, the method was able to locate the source to within δ≤ 45 km, as
can be seen in Fig. 4.

4.2. Sensitivity to the time step

In this experiment, we study the sensitivity of the probability map,

Table 1
Summary of parameters used in forward (label F), and backward (label B),
experiments. Seven experiment types are conducted focusing on the effect of
the maximum number of particles, the time step, the variance of the ensemble,
the travel time, the source location, and history of transport. Unless otherwise
indicated, the source is located at 37° latitude, 24° longitude and 2.5 m below
sea surface.

Parameters Tracking

Experiment f Nmax Δt Travel time F/B
(Million
particles)

(days)

Max. number of
particles

1 0.5 1 hr 27 F/B

Fig. 4 1
50
300

Time step 1 50 1 hr 27 F
Figs. 5 and 6 4 hr

6 hr
12 hr
1 d
3 d

Variance (ensemble) 0.25 50 1 hr 27 F/B
Fig. 7 0.5

0.75
1

Travel time 1 50 1 hr 3 F/B
Fig. 8 6

12
18

Source location 1 50 1 hr 27 F/B
Fig. 9
History of transport 0.75 50 1 hr 3 F
Fig. 11 6

12
24
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obtained after 27 days of tracking, to the value of the time step used in
the RK4 advection scheme. Simulations using =tΔ 1, 4, 6, 12, 24 and
72 h are carried out in the forward/backward experiments as outlined
in the second row of Table 1, where the maximum number of elements
is set to 50 million. The corresponding results are shown in Fig. 5. We
notice that the probability map, and especially the regions of high
probability, do not change much for Δt≤ 12 h. As the time step gets

larger ( =tΔ 1 and 3 days), the probability maps start to loose their si-
milarity, and a remarkable shift in the position of the point of highest
probability (red square on the map) is observed. This is confirmed by
the plot in Fig. 6. The error in this plot is defined as the distance from
the point of highest probability, obtained with a time step Δt, to that of
highest probability obtained with =tΔ 1 h, considered as a surrogate of
the true position of the particle. Note that for 1 hr≤ Δt≤ 6 h, this

Fig. 4. Probability maps at =t 27 days. Plots are generated for forward (top) and backward (bottom) tracking for different values of Nmax using an ensemble flow
field of 100% the standard deviation of the initial dataset and a time step of 1 h. Black square: source. Red and green squares: locations of highest probability at the
end of forward and backward tracking, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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distance ranges between 1 km and 4.2 km, which is of the order of the
grid cell size of the computational domain (4.1 km). To ensure good
accuracy in terms of the time step size, we chose, conservatively,

=tΔ 1 hr for all the experiments that follow.

4.3. Sensitivity to the ensemble flow-field variance

The variance parameter, f2, is introduced to control the uncertainty
in the flow field. In this experiment, we study the effect of f on the
ability of the system to recover the source. To this end, four forward/
backward simulations (Table 1, third row) were carried out using en-
semble flow fields of different standard deviations (25%, 50%, 75% and
100% of the standard deviation of the original dataset). The results are
shown in Fig. 7 in terms of probability maps for the forward and
backward simulations. For the forward simulations, we notice that for
low variances, the region of high probability is more localized (Fig. 7
(a) and (b)). In fact, as the variance gets smaller, the point of highest
probability gets closer to the position of a particle advected from the
source, over the same travel time, using the ensemble average velocity.
As the variance increases, the region of high probability is more spread
out (Fig. 7 (c) and (d)).

For the backward simulations, the source of release is closest to the

Fig. 5. Probability maps at =t 27 days for forward tracking of particles (released from the same source, indicated by a black square). Plotted are the distributions
obtained using different time steps, as indicated. In all cases, =N 50max M, and =f 1.

Fig. 6. Distance, δ′, between the maximum probability point at =t 27 days
obtained using =tΔ 1 hr, and the maximum probability point using Δt≥ 1 hr.
Forward tracking from source (37° latitude, 24° longitude and 2.5m below
surface), with =N 50max M.
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center of the region of high probability when the standard deviation of
the ensemble velocity field is smallest (probability maps (e)). As the
uncertainties in the ensemble velocity field grow, the center of the re-
gion of high probability moves farther away from the source (prob-
ability maps (h)). Thus, the source is predicted more accurately when
the uncertainties in the ensemble velocity field are small. The distance
between the recovered source (green square) and the actual source
(black square) decreases from ∼ 30 km when =f 1 to 6 km when

=f 0.25, as seen in Fig. 7. As discussed earlier, binning also introduces

uncertainties in the particles positions that increase with the bin size.
For the forward problem, binning takes place 9 times, whereas for the
forward/backward problem, it takes place 18 times. The experiments
show that while using the average velocity field is sufficient for pre-
dicting the source when the variance of the ensemble velocity field is
small, this is not the case when the variance of the ensemble velocity
field is large. Thus, when the variability is large, using the ensemble
average may no longer be suitable for predicting the regions of highest
probability.

Fig. 7. Probability maps for forward tracking (top row) and backward tracking (bottom row) experiments using values of f as indicated. In all cases, =tΔ 1 hr and
=N 50max M. The sources location is marked by a black square.
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4.4. Sensitivity to the travel time

In the experiments discussed above, the particles were advected
forward (and backward) in time for 27 days, which corresponds to 9
assimilation cycles. We expect that the greater the travel time, the more
difficult it is for the backward simulation to locate the source, due to
the accumulation of the uncertainty introduced by binning, in addition
to trapping at the beach. To illustrate this, we ran a series of forward/
backward simulations using travel times of 3, 6, 12 and 18 days

(Table 1, fourth row). The results are shown in Fig. 8. From the prob-
ability maps of the forward simulations (top row), we notice that, for
short travel times, the region of high probability is more localized
(Fig. 8(a–c)), whereas for larger travel times, it is more spread out
(Fig. 8 (d)). From the probability maps of the backward simulations
(bottom row), and for short travel times, the source is either included or
close to a region of high probability, which, again, is more localized
(Fig. 8(e–g)). For larger travel times, the region of high probability is
more spread out (Fig. 8 (h)). These observations are consistent with the

Fig. 8. Probability distributions for forward (top row) and backward (bottom row) experiments. Plotted are results for different values of travel time, as indicated.
For all cases, =N 50max M, =tΔ 1 hr, and =f 1, source is marked using a black square.
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conclusions made at the end of Section 4.1. For travel times of 3, 6, 12
and 18 days, the distances δ between the source and recovered source
are respectively 7, 23, 31, and 34 km.

4.5. Sensitivity to the source location

In all the experiments we presented so far, the particles were re-
leased from a fixed point source located at 37° latitude, 24° longitude
and 2.5 m below sea surface in the Red Sea. The probability distribu-
tions at the end of the forward and forward/backward tracking period
capture the impact of the spatio-temporal variability of the flow field on
the particles trajectories. Subsequently, the accuracy of the source re-
covery is not only a function of the travel time, but also of the source
location.

To illustrate the impact of the spatio-temporal variability of the
ensemble flow field on the source location, we conducted a forward/
backward runs with a source located at 38°41′50′′ longitude, 22°35′21′′
latitude and on the sea surface. The simulation parameters are listed in
Table 1, row 6. The probability map of the forward simulation (Fig. 9
(a)) showed multiple regions of high probability, all of which, except
one, are near the coast. This highlights the challenge posed by beaching
in domains characterized by a high coastal length to surface area ratio,

such as the red sea. When we choose the location of highest probability
in the region away from the coast (red square) as the source of a
backward simulation, the backward simulation predicts a probability
map with a single high probability region centered at the initial source
of particle release (the black square). This prediction is more accurate
than that of the forward/backward problem with the source located at
37° latitude, 24° longitude, and where the probability maps are shown
in Fig. 7(d) and (h). Note that both cases have the same travel time (27
days), maximum number of particles (50 million), and ensemble velo-
city fields (using the standard deviation of the original set). This dif-
ference in the accuracy of source recovery may be attributed to the
spatial variability of the uncertainties of the ensemble velocity field. If
particles are advected to regions in which the uncertainties in the flow
are high, the source recovery from the probability map of the backward
simulation will be more uncertain. Fig. 10 shows the spatial distribution
(at the surface) of the average and the standard deviation of the 50
members of the ensemble velocity field, for = =t T6 18a a days. It can be
seen that the in the forward problem with the source located at 37°
latitude, 24° longitude, the particles travel in regions of higher varia-
bility (the northern part of the Red Sea) than those in the case with the
source located at 38°41′50′′ longitude, 22°35′21′′. The particles in the
latter case travel through the central region following a large eddy

Fig. 9. Left: probability map for forward tracking of particles from a source (black square) near the coast of Yanbu. Right: probability map for backward tracking of
particles from a point of high probability (red square) obtained from the forward simulation. =tΔ 1 hr, =N 50max M, and =f 1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Maps of (a) average speed (m/s) and (b) standard deviation (m/s) of the ensemble velocity field at =t 18a days.
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Fig. 11. Left: probability maps for the forward tracking problem at different travel times, as indicated. Center: corresponding maps of σx. Right: corresponding bin
size distributions. =tΔ 1 hr, =N 50max M, and =f 1.
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(Fig. 9) from the source (black square) to the point of high probability
(red square) over a period of 27 days. By comparing Fig. 10(a) and (b),
one can also see that there are regions where the standard deviation is
as large as the average, making the prediction of the source location an
even more challenging task when the particles trajectories pass through
these regions.

4.6. Adaptive binning and variance control

As mentioned in Section 3.4, adaptive binning endows the method
with the ability to limit the increase in the variance of the position of
merged particles, whenever the sum of the probability carried by those
particles is high. To illustrate this feature, probability maps (Fig. 11(a),
(d), (g), (j)) of a forward simulation were obtained at different times (3,
6, 12 and 24 days), along with maps showing the particles variance
distribution (Fig. 11(b), (e), (h), (k)), and the bins distribution
(Fig. 11(c), (f), (i), (l)). As can be seen in the figures, the regions of high
probability are resolved using smaller bins. Accordingly, the variances
(σ σ σ, ,x y z

2 2 2) introduced by binning (see Section 3.3) are smaller in these
regions. It can also be noticed that for short travel times (3 and 6 days)
these variances are very small, reflecting the fact that very little binning
takes place at these early stages, given that the number of particles has
not yet been reached Nmax.

4.7. Computational cost

Fig. 12outlines the computational cost, measured in CPU seconds,
versus the maximum number of particles for the forward experiment
over a duration of 27 days. Other parameters are listed in the first row
of Table 1. The simulations were carried using a parallelized version of
the algorithm presented in Fig. 3 on a Intel Xeon E5-2680 v4 2.4 GHz
Fourteen-Core (28 threads) LGA 2011-3 Processor. Parallelization of
the method is implemented using OpenMP1, where each core (or
thread) advects a fraction of the particles according to the algorithm
shown in Fig. 3. The particles are equally distributed among the cores.
As expected, the plot shows that the CPU time scales linearly with the
number of particles.

5. Conclusions

We presented an efficient algorithm for advecting particles in sto-
chastic flow fields, whose statistics are prescribed by an underlying
ensemble. The algorithm, which employs high order particle advection

schemes, introduces an elements growth control mechanism based on
an adaptive binning procedure, while conserving the zeroth, first and
second moments of probability (total probability, mean position, and
variance). The adaptive binning process offers a tradeoff between speed
and accuracy by limiting the number of particles to a desired maximum.
The forward and backward experiments, implemented in a parallel
computational framework using openMP, demonstrated that the
method is capable of recovering the source location using a relatively
small number of particles ( =N 50max M). Using the original ensemble
velocities, where the standard deviation is as large as the mean in
significant parts of the domain, and capping the number of particles to
50 million, the method succeeded in recovering the source location to
within less than 40 km, for a travel time of 27 days. The distance se-
parating the actual source and the recovered source (location of max-
imum probability in a forward/backward experiment) decreased from
∼ 40 km to ∼ 6 km when the standard deviation of the ensemble ve-
locity is reduced by a factor of 4, which suggests the importance of
reducing the uncertainty in the assimilated products. The accuracy of
source recovery was also shown to increase for shorter travel times.

The novelty of the method, manifested by higher order advection
scheme along with the adaptive and conservative binning procedure,
will lead to improvements in cost, speed and accuracy, all essential to
online tracking.

Future directions include extending the methodology to model
specific species transport such as oil spills and incorporation of an ad-
vanced beaching model that takes into account the species properties
and the beach characteristics.

The numerical implementation of the algorithm will be publicly
available online in the near future.
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